Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-nww4m Total loading time: 0.294 Render date: 2022-06-27T08:37:33.905Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

A Comment on “ p < t ”

Published online by Cambridge University Press:  20 November 2018

Saharon Shelah*
Affiliation:
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA e-mail: shelah@math.huji.ac.il
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dealing with the cardinal invariants $\mathfrak{p}$ and $\mathfrak{t}$ of the continuum, we prove that $\mathfrak{m}\,=\,\mathfrak{p}\,=\,{{\aleph }_{2}}\,\Rightarrow \,\mathfrak{t}\,=\,{{\aleph }_{2}}$ . In other words, if $\text{M}{{\text{A}}_{{{\aleph }_{1}}}}$ (or a weak version of this) holds, then (of course ${{\aleph }_{2}}\,\le \,\mathfrak{p}\,\le \,\mathfrak{t}$ and) $\mathfrak{p}\,=\,\,{{\aleph }_{2}}\,\Rightarrow \,\mathfrak{p}\,=\,\mathfrak{t}$ . The proof is based on a criterion for $\mathfrak{p}\,<\,\mathfrak{t}$.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Abraham, U. and Shelah, S., Lusin sequences under CH and underMartin's Axiom. Fund. Math. 169(2001), no. 2, 97103.CrossRefGoogle Scholar
[2] Abraham, U. and Shelah, S., Ladder gaps over stationary sets. J. Symbolic Logic 69(2004), no. 2, 518532.CrossRefGoogle Scholar
[3] Bartoszyński, T. and Judah, H., Set Theory. On the structure of the real line. A K Peters, Wellesley, MA, 1995.CrossRefGoogle Scholar
[4] Bell, M. G., On the combinatorial principle P(c) . Fund. Math. 114(1981), no. 2, 149157.CrossRefGoogle Scholar
[5] Fremlin, D. H., Consequences of Martin's Axiom. Cambridge Tracts in Mathematics 84, Cambridge University Press, Cambridge, MA, 1984.CrossRefGoogle Scholar
[6] Piotrowski, Z. and Szymański, A., Some remarks on category in topological spaces. Proc. Amer. Math. Soc. 101(1987), no. 1, 156160.CrossRefGoogle Scholar
[7] Rothberger, F., Sur un ensemble toujours de première catégorie qui est dépourvu de la propriété λ . Fund. Math. 32(1939), 294300.CrossRefGoogle Scholar
[8] Rothberger, F., On some problems of Hausdorff and Sierpiński. Fund. Math. 35(1948), 2946.CrossRefGoogle Scholar
[9] Shelah, S.. Large continuum, oracles.arXiv:LO.0707.1818.Google Scholar
[10] Todorčević, S. and Veličković, B., Martin's axiom and partitions. Compositio Mathematica 63(1987), 391408.Google Scholar
You have Access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Comment on “ p < t ”
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Comment on “ p < t ”
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Comment on “ p < t ”
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *