Skip to main content Accessibility help
×
Home

Embedding of Dirichlet type spaces $\mathcal {D}^{p}_{p-1 }$ into tent spaces and Volterra operators

  • Ruishen Qian (a1) and Xiangling Zhu (a2)

Abstract

In this paper, we study the boundedness and compactness of the inclusion mapping from Dirichlet type spaces $\mathcal {D}^{p}_{p-1 }$ to tent spaces. Meanwhile, the boundedness, compactness, and essential norm of Volterra integral operators from Dirichlet type spaces $\mathcal {D}^{p}_{p-1 }$ to general function spaces are also investigated.

Copyright

Corresponding author

Footnotes

Hide All

This work was supported by NNSF of China (Nos. 11801250, 11871257, and 11701222), Overseas Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University, Yanling Youqing Program of Lingnan Normal University, the Key Program of Lingnan Normal University (No. LZ1905), and Department of Education of Guangdong Province (No. 2018KTSCX133). Xiangling Zhu is the corresponding author.

Footnotes

References

Hide All
[1] Aleman, A. and Cima, J., An integral operator on ${H}^p$ and Hardy’s inequality . J. Anal. Math. 85(2001), 157176. http://dx.doi.org/10.1007/BF02788078
[2] Aleman, A. and Siskakis, A., An integral operator on ${H}^p$ . Complex Variables Theory Appl. 28(1995), 149158. http://dx.doi.org/10.1080/1746939508814844
[3] Aleman, A. and Siskakis, A., Integration operators on Bergman spaces . Indiana Univ. Math. J. 46(1997), 337356. http://dx.doi.org/10.1512/iumj.1997.46.1373
[4] Attele, K., Interpolating sequences for the derivatives of Bloch functions . Glasgow Math. J. 34(1992), 3541. http://dx.doi.org/10.1017/S0017089500008521
[5] Duren, P., Theory of ${H}^p$ spaces. Academic Press, New York-London, 1970.
[6] Flett, T., The dual of an inequality of Hardy and Littlewood and some related inequalities . J. Math. Anal. Appl. 38(1972), 756765. http://dx.doi.org/10.1016/0022-247X(72)90081-9
[7] Girela, D. and Peláez, J., Carleson measures, multipliers and integration operators for spaces of Dirichlet type . J. Funct. Anal. 241(2006), 334358. http://dx.doi.org/10.1016/j.jjfa.2006.04.025
[8] Li, P., Liu, J., and Lou, Z., Integral operators on analytic Morrey spaces . Sci. China Math. 57(2014), 19611974. http://dx.doi.org/10.1007/s11425-014-4811-5
[9] Li, S., Liu, J., and Yuan, C., Embedding theorems for Dirichlet type spaces . Canad. Math. Bull. 63(2020), 106117. http://dx.doi.org/10.4153/S0008439519000201
[10] Li, S. and Stević, S., Weighted composition operators from Bergman-type spaces into Bloch spaces . Proc. Indian Acad. Sci. Math. Sci. 117(2007), 371385. http://dx.doi.org/10.1007/s12044-007-0032-y
[11] Littlewood, J. and Paley, R., Theorems on Fourier series and power series . II. Proc. London Math. Soc. 42(1936), 5289. http://dx.doi.org/10.1112/plms/s2-42.1.52
[12] Pau, J. and Zhao, R., Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces . Integral Equat. Operator Theory 78(2014), 483514. http://dx.doi.org/10.1007/s00020-014-2124-2
[13] Pommerenke, C., Schlichte funktionen und analytische funktionen von beschränkten mittlerer Oszillation . Comm. Math. Helv. 52(1977), 591602. http://dx.doi.org/10.1007/BF02567392
[14] Shi, Y. and Li, S., Essential norm of integral operators on Morrey type spaces . Math. Inequal. Appl. 19(2016), 385393. http://dx.doi.org/10.7153/mia-19-30
[15] Siskakis, A. and Zhao, R., A Volterra type operator on spaces of analytic functions. Contemp. Math. 232(1999), 299311.
[16] Tjani, M., Compact composition operators on some Möbius invariant Banach spaces . PhD dissertation, Michigan State University, 1996.
[17] Wu, Z., Carleson measures and multipliers for Dirichlet spaces . J. Funct. Anal. 169(1999), 148163. http://dx.doi.org/10.1006/jfan.1999.3490
[18] Zhao, R., On a general family of function spaces . Ann. Acad. Sci. Fenn. Math. Diss. 105(1996), 56 pp.
[19] Zhu, K., Operator theory in function spaces. 2nd ed., Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007. http://dx.doi.org/10.1090/surv/138
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Embedding of Dirichlet type spaces $\mathcal {D}^{p}_{p-1 }$ into tent spaces and Volterra operators

  • Ruishen Qian (a1) and Xiangling Zhu (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.