No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $\left( X,\,B,\,\mu\right)$ be a
$\sigma $ -finite measure space and let
$H\,\subset \,{{L}^{2}}\left( X,\,\mu\right)$ be a separable reproducing kernel Hilbert space on
$X$ . We show that the multiplier algebra of
$H$ has property
$\left( {{A}_{1}}\left( 1 \right) \right)$ .