Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Folkman, J. H.
and
Graham, R. L.
1969.
A Packing Inequality for Compact Convex Subsets of the Plane.
Canadian Mathematical Bulletin,
Vol. 12,
Issue. 6,
p.
745.
Melissen, Hans (J. B. M.)
1993.
Densest Packings of Congruent Circles in an Equilateral Triangle.
The American Mathematical Monthly,
Vol. 100,
Issue. 10,
p.
916.
GRITZMANN, Peter
and
WILLS, Jörg M.
1993.
Handbook of Convex Geometry.
p.
861.
Melissen, J. B. M.
1994.
Optimal packings of eleven equal circles in an equilateral triangle.
Acta Mathematica Hungarica,
Vol. 65,
Issue. 4,
p.
389.
Melissen, Hans
1994.
Densest packings of eleven congruent circles in a circle.
Geometriae Dedicata,
Vol. 50,
Issue. 1,
p.
15.
Melissen, J.B.M.
and
Schuur, P.C.
1995.
Packing 16, 17 or 18 circles in an equilateral triangle.
Discrete Mathematics,
Vol. 145,
Issue. 1-3,
p.
333.
Lubachevsky, B. D.
and
Graham, R. L.
1995.
Computing and Combinatorics.
Vol. 959,
Issue. ,
p.
303.
Heppes, Aladár
and
Melissen, Hans
1997.
Covering a Rectangle With Equal Circles.
Periodica Mathematica Hungarica,
Vol. 34,
Issue. 1-2,
p.
65.
Lubachevsky, Boris D.
Graham, Ron L.
and
Stillinger, Frank H.
1997.
Patterns and Structures in Disk Packings.
Periodica Mathematica Hungarica,
Vol. 34,
Issue. 1-2,
p.
123.
Payan, Charles
1997.
Empilement de cercles égaux dans un triangle équilatéral a propos d'une conjecture d'Erdős-Oler.
Discrete Mathematics,
Vol. 165-166,
Issue. ,
p.
555.
Melisseny, J. B. M.
1998.
How different can colours be? Maximum separation of points on a spherical octant.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
Vol. 454,
Issue. 1973,
p.
1499.
Fodor, Ferenc
1999.
The Densest Packing of 19 Congruent Circles in a Circle.
Geometriae Dedicata,
Vol. 74,
Issue. 2,
p.
139.
Szabó, P. G.
Csendes, T.
Casado, L. G.
and
García, I.
2001.
Optimization Theory.
Vol. 59,
Issue. ,
p.
191.
Lubachevsky, Boris D.
and
Graham, Ronald
2003.
Discrete and Computational Geometry.
Vol. 25,
Issue. ,
p.
633.
Szabó, Péter Gábor
Markót, Mihály Csaba
and
Csendes, Tibor
2005.
Essays and Surveys in Global Optimization.
p.
233.
van Dam, Edwin
Rennen, Gijs
and
Husslage, Bart
2007.
Bounds for Maximin Latin Hypercube Designs.
SSRN Electronic Journal,
van Dam, Edwin R.
Husslage, Bart
den Hertog, Dick
and
Melissen, Hans
2007.
Maximin Latin Hypercube Designs in Two Dimensions.
Operations Research,
Vol. 55,
Issue. 1,
p.
158.
Lubachevsky, Boris D.
and
Graham, Ronald L.
2009.
Minimum perimeter rectangles that enclose congruent non-overlapping circles.
Discrete Mathematics,
Vol. 309,
Issue. 8,
p.
1947.
van Dam, Edwin R.
Rennen, Gijs
and
Husslage, Bart
2009.
Bounds for Maximin Latin Hypercube Designs.
Operations Research,
Vol. 57,
Issue. 3,
p.
595.
Fu, L.
Liew, S. C.
and
Huang, J.
2009.
Power Controlled Scheduling with Consecutive Transmission Constraints: Complexity Analysis and Algorithm Design.
p.
1530.