Skip to main content Accessibility help
×
×
Home

Group Algebras with Minimal Strong Lie Derived Length

  • Ernesto Spinelli (a1)
Abstract

Let KG be a non-commutative strongly Lie solvable group algebra of a group G over a field K of positive characteristic p. In this note we state necessary and sufficient conditions so that the strong Lie derived length of KG assumes its minimal value, namely [log2(p + 1)].

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Group Algebras with Minimal Strong Lie Derived Length
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Group Algebras with Minimal Strong Lie Derived Length
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Group Algebras with Minimal Strong Lie Derived Length
      Available formats
      ×
Copyright
References
Hide All
[1] Catino, F. and E. Spinelli, A note on strong Lie derived length of group algebras. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 10(2007), no. 1, 8386.
[2] Jennings, S. A., The structure of the group ring of a p-group over a modular field. Trans. Amer. Math. Soc. 50(1941), 175185.
[3] Levin, F. and Rosenberger, G., Lie metabelian group rings. In: Group and Semigroup Rings. North-Holland Math. Stud. 126, North-Holland, Amsterdam, 1986, pp. 153161.
[4] Passi, I. B. S., Group rings and their augmentation ideals. Lectures Notes in Mathematics 715, Springer-Verlag, Berlin, 1979.
[5] Passi, I. B. S., Passman, D. S., and Sehgal, S. K., Lie solvable group rings. Canad. J. Math. 25(1973), 748757.
[6] Rossmanith, R., Lie centre-by-metabelian group algebras in even characteristic. I. Israel J. Math. 115(2000), 5175.
[7] Sahai, M., Lie solvable group algebras of derived length three. Publ. Mat. 39(1995), no. 2, 233240.
[8] Sehgal, S. K., Topics in group rings. Monographs and Textbooks in Pure and Applied Math. 50. Marcel Dekker, New York, 1978.
[9] Shalev, A., Dimension subgroups, nilpotency indices, and the number of generators of ideals in p-group algebras. J. Algebra 129(1990), 412438.
[10] Shalev, A., The derived length of Lie soluble group rings. I. J. Pure Appl. Algebra 78(1992), no. 3, 291300.
[11] Shalev, A. The derived length of Lie soluble group rings. II. J. LondonMath. Soc. 49(1994), no. 1, 9399.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed