Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
If a mapping of several complex variables into projective space is holomorphic in each pair of variables, then it is globally holomorphic.
[3] Hartogs, F., Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten. Math. Ann62(1906), no. 1, 1–88.Google Scholar
4
[4] Hai, Le Mau and Khue, Nguyen Van, Hartogs spaces, spaces having the Forelli property and Hartogs holomorphic extension spaces. Vietnam J. Math.33(2005), no. 1, pp. 43–53.Google Scholar
5
[5] Shiffman, B., Hartogs theorems for separately holomorphic mappings into complex spaces. C. R. Acad. Sci. Paris Sér. I Math.310(1990), no. 3, 89–94.Google Scholar
6
[6] Shiffman, B., Separately meromorphic functions and separately holomorphic mappings. In: Several Complex Variables and Complex Geometry. Proc. Sympos. Pure Math. 52, American Mathematical Society, Providence, RI, 1991, pp. 191–198.Google Scholar