Skip to main content Accessibility help
×
Home

The Milnor–Stasheff Filtration on Spaces and Generalized Cyclic Maps

  • Norio Iwase (a1), Mamoru Mimura (a2), Nobuyuki Oda (a3) and Yeon Soo Yoon (a4)

Abstract

The concept of ${{C}_{k}}$ -spaces is introduced, situated at an intermediate stage between $H$ -spaces and $T$ -spaces. The ${{C}_{k}}$ -space corresponds to the $k$ -th Milnor–Stasheff filtration on spaces. It is proved that a space $X$ is a ${{C}_{k}}$ -space if and only if the Gottlieb set $G(Z,\,X)\,=\,[Z,\,X]$ for any space $Z$ with cat $Z\,\le \,k$ , which generalizes the fact that $X$ is a $T$ -space if and only if $G(\sum B,\,X)\,=\,[\sum B,\,X]$ for any space $B$ . Some results on the ${{C}_{k}}$ -space are generalized to the $C_{k}^{f}$ -space for a map $f\,:\,A\,\to \,X$ . Projective spaces, lens spaces and spaces with a few cells are studied as examples of ${{C}_{k}}$ -spaces, and non- ${{C}_{k}}$ -spaces.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Milnor–Stasheff Filtration on Spaces and Generalized Cyclic Maps
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Milnor–Stasheff Filtration on Spaces and Generalized Cyclic Maps
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Milnor–Stasheff Filtration on Spaces and Generalized Cyclic Maps
      Available formats
      ×

Copyright

References

Hide All
[1] Aguadé, J., Decomposable free loop spaces. Canad. J. Math. 39(1987), no. 4, 938955. http://dx.doi.org/10.4153/CJM-1987-047-9
[2] Broughton, S. A., The Gottlieb group of finite linear quotients of odd-dimensional spheres. Proc. Amer. Math. Soc. 111(1991), no. 4, 11951197.
[3] Ganea, T., Lusternik-Schnirelmann category and strong category. Illionis J. Math. 11(1967), 417427.
[4] Gottlieb, D. H., A certain subgroup of the fundamental group. Amer. J. Math. 87(1965), 840856. http://dx.doi.org/10.2307/2373248
[5] Gottlieb, D. H., Evaluation subgroups of homotopy groups. Amer. J. Math. 91(1969), 729756. http://dx.doi.org/10.2307/2373349
[6] Gottlieb, D. H., On the construction of G-spaces and applications to homogeneous spaces. Proc. Cambridge Philos. Soc. 68(1970), 321327. http://dx.doi.org/10.1017/S0305004100046120
[7] Haslam, H. B., G-spaces mod F and H-spaces mod F. Duke Math. J. 38(1971), 671679. http://dx.doi.org/10.1215/S0012-7094-71-03882-8
[8] Hubbuck, J. R., Hopf structures on Stiefel manifolds. Math. Ann. 262(1983), no. 4, 529547. http://dx.doi.org/10.1007/BF01456067
[9] Iwase, N., H-spaces with generating subspaces. Proc. Roy. Soc. Edinburgh Sect. A 111(1989), no. 3-4, 199211.
[10] Iwase, N., Ganea's conjecture on Lusternik-Schnirelmann category. Bull. London Math. Soc. 30(1998), no. 6, 623634. http://dx.doi.org/10.1112/S0024609398004548
[11] Iwase, N., The Ganea conjecture and recent developments on Lusternik-Schnirelmann category. Sugaku Expositions 20(2007), no. 1, 4363.
[12] Iwase, N., Kono, A. and Mimura, M., Generalized Whitehead spaces with few cells. Publ. Res. Inst. Math. Sci. 28(1992), no. 4, 615652. http://dx.doi.org/10.2977/prims/1195168211
[13] Iwase, N. and Oda, N., Splitting off rational parts in homotopy types. Topology Appl. 153(2005), no. 1, 133140. http://dx.doi.org/10.1016/j.topol.2005.01.027
[14] James, I. M., On category in the sense of Lusternik-Schnirelmann. Topology 17(1978), no. 4, 331348. http://dx.doi.org/10.1016/0040-9383(78)90002-2
[15] Lang, G. E. Jr, Evaluation subgroups of factor spaces. Pacific J. Math. 42(1972), 701709.
[16] Milnor, J., Construction of universal bundles. I, II. Ann. Math. 63(1956), 272284, 430–436. http://dx.doi.org/10.2307/1969609
[17] Oda, N., The homotopy set of the axes of pairings. Canad. J. Math. 17(1990), no. 5, 856868. http://dx.doi.org/10.4153/CJM-1990-044-3
[18] Oda, N., Pairings and copairings in the category of topological spaces. Publ. Res. Inst. Math. Sci. 28(1992), no. 1, 8397. http://dx.doi.org/10.2977/prims/1195168857
[19] Oprea, J., Finite group actions on spheres and the Gottlieb group. J. Korean Math. Soc. 28(1991), no. 1, 6578.
[20] Siegel, J., G-spaces, H-spaces andW-spaces. Pacific J. Math. 31(1969), 209214.
[21] Stasheff, J. D., Homotopy associativity of H-spaces I, II. Trans. Amer. Math. Soc. 108(1963), 275292, 293–312.
[22] Thomas, E., On functional cup-products and the transgression operator. Arch. Math. (Basel) 12(1961), 435444.
[23] Varadarajan, K., Generalized Gottlieb groups. J. Indian Math. Soc. 33(1969), 141164.
[24] Whitehead, G. W., Elements of Homotopy Theory. Graduate Texts in Mathematics 61. Springer-Verlag, New York, 1978.
[25] Woo, M. H. and Kim, J.-R., Certain subgroups of homotopy groups. J. Korean Math. Soc. 21(1984), no. 2, 109120.
[26] Woo, M. H. and Yoon, Y. S., T-spaces by the Gottlieb groups and duality. J. Austral.Math. Soc. Ser. A 59(1995), no. 2, 193203. http://dx.doi.org/10.1017/S1446788700038593
[27] Yoon, Y. S., Generalized Gottlieb groups and generalized Wang homomorphisms. Sci. Math. Jpn. 55(2002), no. 1, 139148.
[28] Yoon, Y. S., Hf -spaces for maps and their duals. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 14(2007), no. 4, 289306.
[29] Yoon, Y. S., Lifting T-structures and their duals. J. Chungcheong Math. Soc. 20(2007), 245259.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed