Published online by Cambridge University Press: 20 November 2018
Suppose that   $\gamma \in {{C}^{2}}\left( \left[ 0,\infty\right]) \right)$  is a real-valued function such that
 $\gamma \in {{C}^{2}}\left( \left[ 0,\infty\right]) \right)$  is a real-valued function such that   $\gamma \left( 0 \right)\,=\,{\gamma }'\left( 0 \right)\,=\,0$ , and
 $\gamma \left( 0 \right)\,=\,{\gamma }'\left( 0 \right)\,=\,0$ , and   ${\gamma }''\left( t \right)\,\approx \,{{t}^{m-2}}$ , for some integer
 ${\gamma }''\left( t \right)\,\approx \,{{t}^{m-2}}$ , for some integer   $m\,\ge \,2$ . Let
 $m\,\ge \,2$ . Let   $\Gamma \left( t \right)\,=\,\left( t,\,\gamma \left( t \right) \right),\,t\,>\,0$ , be a curve in the plane, and let
 $\Gamma \left( t \right)\,=\,\left( t,\,\gamma \left( t \right) \right),\,t\,>\,0$ , be a curve in the plane, and let   $d\text{ }\!\!\lambda\!\!\text{ }\,\text{=}\,dt$  be a measure on this curve. For a function
 $d\text{ }\!\!\lambda\!\!\text{ }\,\text{=}\,dt$  be a measure on this curve. For a function   $f$  on
 $f$  on   ${{\mathbf{R}}^{2}}$ , let
 ${{\mathbf{R}}^{2}}$ , let
  $$Tf\left( x \right)\,=\,\left( \text{ }\lambda \text{ }*f \right)\left( x \right)=\int_{0}^{\infty }{f\left( x-\Gamma \left( t \right) \right)dt,\,\,x\in {{\mathbf{R}}^{2}}}.$$
 $$Tf\left( x \right)\,=\,\left( \text{ }\lambda \text{ }*f \right)\left( x \right)=\int_{0}^{\infty }{f\left( x-\Gamma \left( t \right) \right)dt,\,\,x\in {{\mathbf{R}}^{2}}}.$$
An elementary proof is given for the optimal   ${{L}^{p}}-{{L}^{q}}$  mapping properties of
 ${{L}^{p}}-{{L}^{q}}$  mapping properties of   $T$ .
 $T$ .