Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-kbg4c Total loading time: 0.186 Render date: 2021-04-11T16:50:32.117Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Note on the Antipode for Algebraic Quantum Groups

Published online by Cambridge University Press:  20 November 2018

L. Delvaux
Affiliation:
Department of Mathematics, University of Hasselt, Agoralaan, B-3590 Diepenbeek, Belgium e-mail: Lydia.Delvaux@uhasselt.be
A. Van Daele
Affiliation:
Department of Mathematics, K.U. Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium e-mail: Alfons.VanDaele@wis.kuleuven.be
Shuanhong Wang
Affiliation:
Department of Mathematics, Southeast University, Nanjing 210096, China e-mail: shuanhwang@seu.edu.cn
Rights & Permissions[Opens in a new window]

Abstract

Recently, Beattie, Bulacu ,and Torrecillas proved Radford's formula for the fourth power of the antipode for a co-Frobenius Hopf algebra.

In this note, we show that this formula can be proved for any regular multiplier Hopf algebra with integrals (algebraic quantum groups). This, of course, not only includes the case of a finite-dimensional Hopf algebra, but also that of any Hopf algebra with integrals (co-Frobenius Hopf algebras). Moreover, it turns out that the proof in this more general situation, in fact, follows in a few lines from well-known formulas obtained earlier in the theory of regular multiplier Hopf algebras with integrals.

We discuss these formulas and their importance in this theory. We also mention their generalizations, in particular to the (in a certain sense) more general theory of locally compact quantum groups. Doing so, and also because the proof of the main result itself is very short, the present note becomes largely of an expository nature.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Beattie, M., Bulacu, D., and Torrecillas, B., Radford's S 4 formula for co-Frobenius Hopf algebras. J. Algebra 307(2007), no. 1, 330342. http://dx.doi.org/10.1016/j.jalgebra.2006.06.004 CrossRefGoogle Scholar
[2] Delvaux, L., The size of the intrinsic group of a multiplier Hopf algebra. Comm. Algebra 31(2003), no. 3, 14991514. http://dx.doi.org/10.1081/AGB-120017785 CrossRefGoogle Scholar
[3] Delvaux, L. and Van Daele, A., Algebraic quantum hypergroups. Adv. Math. 226(2011), no. 2, 11341167. http://dx.doi.org/10.1016/j.aim.2010.07.015 CrossRefGoogle Scholar
[4] Delvaux, L. and Van Daele, A., The Drinfel’d double of multiplier Hopf algebras. J. Algebra 272(2004), no. 1, 273291. http://dx.doi.org/10.1016/j.jalgebra.2003.03.003 CrossRefGoogle Scholar
[5] Delvaux, L., Van Daele, A., and Wang, S., Bicrossed product of multiplier Hopf algebras. arXiv:0903.2974v1[math.RA].Google Scholar
[6] Drabant, B. and Van Daele, A.. Pairing and quantum double of multiplier Hopf algebras. Algebra. Represent. Theory 4(2001), no. 2, 109132. http://dx.doi.org/10.1023/A:1011470032416 CrossRefGoogle Scholar
[7] Drabant, B., Van Daele, A., and Zhang, Y., Actions of multiplier Hopf algebras. Comm. Algebra 27(1999), no. 9, 41174172. http://dx.doi.org/10.1080/00927879908826688 CrossRefGoogle Scholar
[8] Kustermans, J., The analytic structure of algebraic quantum groups. J. Algebra 259(2003), no. 2, 415450. http://dx.doi.org/10.1016/S0021-8693(02)00570-7 CrossRefGoogle Scholar
[9] Kustermans, J. and Vaes, S., A simple definition for locally compact quantum groups. C. R. Acad. Sci. Paris Sér I Math. 328(1999), no. 10, 871876.CrossRefGoogle Scholar
[10] Kustermans, J. and Vaes, S., Locally compact quantum groups. Ann. Sci. école Norm. Sup. 33(2000), no. 6, 837934.CrossRefGoogle Scholar
[11] Kustermans, J. and Vaes, S., Locally compact quantum groups in the von Neumann algebra setting. Math. Scand. 92(2003), no. 1, 6892.CrossRefGoogle Scholar
[12] Kustermans, J. and Van Daele, A., C*-algebraic quantum groups arising from algebraic quantum groups. Internat. J. Math. 8(1997), no. 8, 10671139. http://dx.doi.org/10.1142/S0129167X97000500 CrossRefGoogle Scholar
[13] Larson, R. G. Characters of Hopf algebras. J. Algebra 17(1971), 352368. http://dx.doi.org/10.1016/0021-8693(71)90018-4 CrossRefGoogle Scholar
[14] Landstad, M. B. and Van Daele, A., Compact and discrete subgroups of algebraic quantum groups. I. arXiv:math/0702458v2[math.OA].Google Scholar
[15] Radford, D., The order of the antipode of any finite-dimensional Hopf algebra is finite. Amer. J. Math. 98(1976), no. 2, 333355. http://dx.doi.org/10.2307/2373888 CrossRefGoogle Scholar
[16] Van Daele, A., Multiplier Hopf algebras. Trans. Amer. Math. Soc. 342(1994), no. 2, 917932. http://dx.doi.org/10.2307/2154659 CrossRefGoogle Scholar
[17] Van Daele, A., An algebraic framework for group duality. Adv. Math. 140(1998), no. 2, 323366. http://dx.doi.org/10.1006/aima.1998.1775 CrossRefGoogle Scholar
[18] Van Daele, A., Locally compact quantum groups. A von Neumann algebra approach. arXiv:math/0602212v1[math.OA].Google Scholar
[19] Van Daele, A. and Zhang, Y., A survey on multiplier Hopf algebras. In: Hopf Algebras and Quantum Groups. Lecture Notes in Pure and Appl. Math. 206. Dekker, New York, 2000, pp. 269—309.Google ScholarPubMed
[20] Voigt, C., Bornological quantum groups. arXiv:math/0511195v1[math.QA]. http://dx.doi.org/10.2140/pjm.2008.235.93 CrossRefGoogle Scholar
[21] Voigt, C., Equivariant cyclic homology for quantum groups. arXiv:math/0601725v1[math.KT].Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 19 *
View data table for this chart

* Views captured on Cambridge Core between 20th November 2018 - 11th April 2021. This data will be updated every 24 hours.

Access Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Note on the Antipode for Algebraic Quantum Groups
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Note on the Antipode for Algebraic Quantum Groups
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Note on the Antipode for Algebraic Quantum Groups
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *