Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-2fphr Total loading time: 0.184 Render date: 2021-06-21T02:19:47.152Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

On the Continuity of the Eigenvalues of a Sublaplacian

Published online by Cambridge University Press:  20 November 2018

Amine Aribi
Affiliation:
Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, France e-mail: amine.aribi@lmpt.univ-tours.fr
Sorin Dragomir
Affiliation:
Dipartimento di Matematica e Informatica, Universitá degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, Campus Macchia Romana, 85100 Potenza, Italy e-mail: sorin.dragomir@unibas.it
Ahmad El Soufi
Affiliation:
Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, France e-mail: Ahmad.Elsoufi@lmpt.univ-tours.fr
Rights & Permissions[Opens in a new window]

Abstract

We study the behavior of the eigenvalues of a sublaplacian ${{\Delta }_{b}}$ on a compact strictly pseudoconvex $\text{CR}$ manifold $M$ , as functions on the set ${{\mathcal{P}}_{+}}$ of positively oriented contact forms on $M$ by endowing ${{\mathcal{P}}_{+}}$ with a natural metric topology.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Aribi, A., Dragomir, S., and Soufi, A. El, Sublaplacian eigenvalue functionals and contact structuredeformations on compact CR manifolds. In preparation.Google Scholar
[2] Bando, S. and Urakawa, H., Generic properties of the eigenvalues of the Laplacian for compactRiemannian manifolds. Tohoku Math. J. 35 (1983), 155172. http://dx.doi.org/10.2748/tmj/1178229047 Google Scholar
[3] Barletta, E. and Dragomir, S., Sublaplacians on CR manifolds. Bull. Math. Soc. Sci. Math. Roumanie 52 (2009), 332.Google Scholar
[4] Bony, J. M., Principe du maximum, inégalité de Harnak et unicité du probl`eme de Cauchy pourles opérateurs elliptiques dégénéré. Ann. Inst. Fourier Grenoble 19 (1969), 277304. http://dx.doi.org/10.5802/aif.319 CrossRefGoogle Scholar
[5] Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR manifolds. Progr. Math. 246, Birkhäuser, Boston–Basel–Berlin, 2006.Google Scholar
[6] Soufi, A. El and Ilias, S., Laplacian eigenvalue functionals and metric deformations on compactmanifolds. J. Geom. Phys. 58 (2008), 89104. http://dx.doi.org/10.1016/j.geomphys.2007.09.008 CrossRefGoogle Scholar
[7] Kriegl, A. and Michor, P., Differentiable perturbation of unbounded operators. Math. Ann. 327 (2003), 191201. http://dx.doi.org/10.1007/s00208-003-0446-5 CrossRefGoogle Scholar
[8] Lee, J. M., The Fefferman metric and pseudohermitian invariants. Trans. Amer. Math. Soc. 296 (1986), 411429.Google Scholar
[9] Menikoff, A. and Sjöstrand, J., On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235 (1978), 5585. http://dx.doi.org/10.1007/BF01421593 CrossRefGoogle Scholar
[10] Mounoud, P., Some topological properties of the space of Lorentz metrics. Differential Geom. Appl. 15 (2001), 4757. http://dx.doi.org/10.1016/S0926-2245(01)00039-0 CrossRefGoogle Scholar
[11] Rudin, W., Functional analysis. Internat. Ser. Pure Appl. Math., McGraw-Hill, Inc., New York–London–Paris, 1991.Google Scholar
[12] Sjöstrand, J., On the eigenvalues of a class of hypoelliptic operators. IV. Ann. Inst. Fourier (Grenoble) 30 (1980), 109169.CrossRefGoogle Scholar
[13] Urakawa, H., How do eigenvalues of Laplacian depend upon deformations of Riemannianmetrics? In: Spectra of Riemannian manifolds, Kaigai Publications, Tokyo, 1983, 129137.Google Scholar
You have Access
4
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the Continuity of the Eigenvalues of a Sublaplacian
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the Continuity of the Eigenvalues of a Sublaplacian
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the Continuity of the Eigenvalues of a Sublaplacian
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *