Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T07:20:35.559Z Has data issue: false hasContentIssue false

On the Frequency of Algebraic Brauer Classes on Certain Log K3 Surfaces

Published online by Cambridge University Press:  03 December 2018

Jörg Jahnel
Affiliation:
Department Mathematik, Univ. Siegen, Walter-Flex-Str. 3, D-57068 Siegen, Germany Email: jahnel@mathematik.uni-siegen.de URL: http://www.uni-math.gwdg.de/jahnel
Damaris Schindler
Affiliation:
Mathematisch Instituut, Universiteit Utrecht, Budapestlaan 6, NL-3584 CD Utrecht, The Netherlands Email: d.schindler@uu.nl URL: http://www.uu.nl/staff/DSchindler

Abstract

Given systems of two (inhomogeneous) quadratic equations in four variables, it is known that the Hasse principle for integral points may fail. Sometimes this failure can be explained by some integral Brauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer group for a family of such systems and show that the failure of the integral Hasse principle due to an algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the number of exceptions.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author was supported by the NWO Veni Grant No. 016.Veni.173.016.

References

Berg, J., Obstructions to integral points on affine Châtelet surfaces. 2017. arxiv:1710.07969.Google Scholar
Birch, B. J. and Swinnerton-Dyer, H. P. F., The Hasse problem for rational surfaces . In: Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday III. J. Reine Angew. Math. 274/275(1975), 164174. https://doi.org/10.1515/crll.1975.274-275.164.Google Scholar
Bombieri, E. and Pila, J., The number of integral points on arcs and ovals . Duke Math. J. 59(1989), 337357. https://doi.org/10.1215/S0012-7094-89-05915-2.Google Scholar
Bosma, W., Cannon, J., and Playoust, C., The Magma algebra system I. The user language. Computational algebra and number theory (London, 1993) . J. Symbolic Comput. 24(1997), 235265. https://doi.org/10.1006/jsco.1996.0125.Google Scholar
de la Bretèche, R. and Browning, T. D., Density of Châtelet surfaces failing the Hasse principle . Proc. Lond. Math. Soc. 108(2014), 10301078. https://doi.org/10.1112/plms/pdt060.Google Scholar
Bright, M. and Lyczak, J., A uniform bound on the Brauer groups of certain log K3 surfaces. arxiv:1705.04529.Google Scholar
Colliot-Thélène, J.-L. and Wittenberg, O., Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines . Amer. J. Math. 134(2012), 13031327. https://doi.org/10.1353/ajm.2012.0036.Google Scholar
Colliot-Thélène, J.-L. and Xu, F., Brauer–Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms . With an appendix by D. Wei and Xu. Compos. Math. 145(2009), 309363. https://doi.org/10.1112/S0010437X0800376X.Google Scholar
Dietmann, R., On the distribution of Galois groups . Mathematika 58(2012), 3544. https://doi.org/10.1112/S0025579311002105.Google Scholar
Grothendieck, A. and Dieudonné, J., (1964), Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, 20, 24, 28, 32, Inst. Hautes Études Sci. Publ. Math. 20, 1964.Google Scholar
Hartshorne, R., Algebraic geometry . Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
Jahnel, J. and Schindler, D., On the number of certain del Pezzo surfaces of degree four violating the Hasse principle . J. Number Theory 162(2016), 224254. https://doi.org/10.1016/j.jnt.2015.10.018.Google Scholar
Jahnel, J. and Schindler, D., On integral points on degree four del Pezzo surfaces . Israel J. Math. 222(2017), 2162. https://doi.org/10.1007/s11856-017-1581-0.Google Scholar
Jahnel, J. and Schindler, D., On the algebraic Brauer classes on open degree four del Pezzo surfaces. https://doi.org/10.1016/j.jnt.2019.01.010.Google Scholar
Jouanolou, J.-P., Théorèmes de Bertini et applications . Progress in Mathematics, 42, Birkhäuser Boston, Boston, MA, 1983.Google Scholar
Marden, M., Geometry of polynomials . Second ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966.Google Scholar
Matsumura, H., Commutative ring theory . Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.Google Scholar
Mitankin, V., Failures of the integral Hasse principle for affine quadric surfaces . J. Lond. Math. Soc. (2) 95(2017), no. 3, 10351052. https://doi.org/10.1112/jlms.12047.Google Scholar
Osserman, B., Lecture notes on Properties of fibers and applications. 2017. https://www.math.ucdavis.edu/∼osserman/classes/248B-W12/notes/fibers.pdf.Google Scholar
Schur, I., Vorlesungen über Invariantentheorie . Die Grundlehren der mathematischen Wissenschaften, 143, Springer-Verlag, Berlin-New York, 1968.Google Scholar
Serre, J.-P., Lectures on the Mordell-Weil theorem . Third ed., Aspects of Mathematics, 15, Friedr. Vieweg & Sohn, Braunschweig, 1997. https://doi.org/10.1007/978-3-663-10632-6.Google Scholar
Wittenberg, O., Intersections de deux quadriques et pinceaux de courbes de genre 1 . Lecture Notes in Mathematics, 1901, Springer, Berlin, 2007. https://doi.org/10.1007/3-540-69137-5.Google Scholar