No CrossRef data available.
Published online by Cambridge University Press: 14 November 2024
Let f and g be two distinct normalized primitive holomorphic cusp forms of even integral weight  $k_{1}$ and
$k_{1}$ and  $k_{2}$ for the full modular group
$k_{2}$ for the full modular group  $SL(2,\mathbb {Z})$, respectively. Suppose that
$SL(2,\mathbb {Z})$, respectively. Suppose that  $\lambda _{f\times f\times f}(n)$ and
$\lambda _{f\times f\times f}(n)$ and  $\lambda _{g\times g\times g}(n)$ are the n-th Dirichlet coefficient of the triple product L-functions
$\lambda _{g\times g\times g}(n)$ are the n-th Dirichlet coefficient of the triple product L-functions  $L(s,f\times f\times f)$ and
$L(s,f\times f\times f)$ and  $L(s,g\times g\times g)$. In this paper, we consider the sign changes of the sequence
$L(s,g\times g\times g)$. In this paper, we consider the sign changes of the sequence  $\{\lambda _{f\times f\times f}(n)\}_{n\geq 1}$ and
$\{\lambda _{f\times f\times f}(n)\}_{n\geq 1}$ and  $\{\lambda _{f\times f\times f}(n)\lambda _{g\times g\times g}(n)\}_{n\geq 1}$ in short intervals and establish quantitative results for the number of sign changes for
$\{\lambda _{f\times f\times f}(n)\lambda _{g\times g\times g}(n)\}_{n\geq 1}$ in short intervals and establish quantitative results for the number of sign changes for  $n \leq x$, which improve the previous results.
$n \leq x$, which improve the previous results.
 $kth$
 derivative estimate for a trigonometric sum via Vinogradov’s integral. Tr. Mat. Inst. Steklova 296(2017), 95–110, English version published in Proc. Steklov Inst. Math. 296(2017), no. 1, 88–103.Google Scholar
$kth$
 derivative estimate for a trigonometric sum via Vinogradov’s integral. Tr. Mat. Inst. Steklova 296(2017), 95–110, English version published in Proc. Steklov Inst. Math. 296(2017), no. 1, 88–103.Google Scholar $L$
-functions. Int. J. Number Theory 20(2024), no. 08, 2069–2081.CrossRefGoogle Scholar
$L$
-functions. Int. J. Number Theory 20(2024), no. 08, 2069–2081.CrossRefGoogle Scholar $L$
-functions of
$L$
-functions of 
 $GL(r)$
 and its applications. Acta Math. Hungar. 169(2023), no. 2, 489–502. MR 4594312CrossRefGoogle Scholar
$GL(r)$
 and its applications. Acta Math. Hungar. 169(2023), no. 2, 489–502. MR 4594312CrossRefGoogle Scholar $L$
-functions and some applications. Trans. Amer. Math. Soc. 358(2006), no. 1, 441–472. MR 2171241CrossRefGoogle Scholar
$L$
-functions and some applications. Trans. Amer. Math. Soc. 358(2006), no. 1, 441–472. MR 2171241CrossRefGoogle Scholar $GL(3)$
$GL(3)$
 
 $L$
-functions. Int. Math. Res. Not. IMRN 2023(2023), no. 13, 11453–11470.CrossRefGoogle Scholar
$L$
-functions. Int. Math. Res. Not. IMRN 2023(2023), no. 13, 11453–11470.CrossRefGoogle Scholar $L$
-functions. Proc. Indian Acad. Sci. Math. Sci. 133(2023), no. 1, Paper No. 8, 12. MR 4572184CrossRefGoogle Scholar
$L$
-functions. Proc. Indian Acad. Sci. Math. Sci. 133(2023), no. 1, Paper No. 8, 12. MR 4572184CrossRefGoogle Scholar $L$
-functions. Rocky Mountain J. Math. 47(2017), no. 2, 553–570. MR 3635374CrossRefGoogle Scholar
$L$
-functions. Rocky Mountain J. Math. 47(2017), no. 2, 553–570. MR 3635374CrossRefGoogle Scholar $L$
 functions. Compos. Math. 64(1987), no. 1, 31–115.Google Scholar
$L$
 functions. Compos. Math. 64(1987), no. 1, 31–115.Google Scholar $L$
-functions and random matrix theory. Duke Math. J. 81(1996), no. 2, 269–322 (English).CrossRefGoogle Scholar
$L$
-functions and random matrix theory. Duke Math. J. 81(1996), no. 2, 269–322 (English).CrossRefGoogle Scholar $L$
-functions. Amer. J. Math. 103(1981), no. 2, 297–355. MR 610479CrossRefGoogle Scholar
$L$
-functions. Amer. J. Math. 103(1981), no. 2, 297–355. MR 610479CrossRefGoogle Scholar $L$
-functions for GL(2). Compos. Math. 70(1989), no. 3, 245–273. MR 1002045Google Scholar
$L$
-functions for GL(2). Compos. Math. 70(1989), no. 3, 245–273. MR 1002045Google Scholar