Skip to main content
×
×
Home

Orbits of Geometric Descent

  • A. Daniilidis (a1), D. Drusvyatskiy, (a2) and A. S. Lewis (a3)
Abstract

We prove that quasiconvex functions always admit descent trajectories bypassing all nonminimizing critical points.

Copyright
References
Hide All
[1] Arrow, K. J. and Debreu, G., Existence of an equilibrium for a competitive economy. Econometrica 22 (1954), 265290. http://dx.doi.org/10.2307/1907353
[2] Bolte, J., Daniilidis, A., Ley, O., and Mazet, L., Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc. 362 (2010), no. 6, 33193363. http://dx.doi.org/10.1090/S0002-9947-09-05048-X
[3] Bruck, R. E., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975), 1526. http://dx.doi.org/10.1016/0022-1236(75)90027-0
[4] Daniilidis, A., David, G., Durand-Cartagena, E., and Lemenant, A., Rectifiability of self-contracted curves in the Euclidean space and applications. J. Geom. Anal. (2013), 129. http://dx.doi.org/10.1007/s12220-013-9464-z
[5] Daniilidis, A., Ley, O., and Sabourau, S., Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions. J. Math. Pures Appl. 94 (2010), no. 2, 183199. http://dx.doi.org/10.1016/j.matpur.2010.03.007
[6] Kelley, J. L., General topology. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, 27, Springer-Verlag, New York-Berlin, 1975.
[7] Kunze, M., Marques, M., and Manuel, D. P., An introduction to Moreau's sweeping process. In: Impacts in mechanical systems (Grenoble, 1999), Lecture Notes in Physics, 551, Springer, Berlin, 2000, pp. 160..
[8] Kurdyka, K., On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 769783. http://dx.doi.org/10.5802/aif.1638
[9] Longinetti, M., Manselli, P., and Venturi, A., On steepest descent curves for quasiconvex families in Rn. arxiv:1303.3721
[10] Manselli, P. and Pucci, C., Maximum length of steepest descent curves for quasi-convex functions.\ Geom. Dedicata 38 (1991), no. 2, 211227.
[11] Moreau, J.-J., Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations 26 (1977), no. 3, 347374. http://dx.doi.org/10.1016/0022-0396(77)90085-7
[12] Rockafellar, T. and Wets, R., Variational analysis. Grundlehren der MathematischenWissenschaften, 317, Springer-Verlag, Berlin, 1998.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed