Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-03T17:56:40.855Z Has data issue: false hasContentIssue false

Several Hardy Type Inequalities with Weights Related to Generalized Greiner Operator

Published online by Cambridge University Press:  20 November 2018

Pengcheng Niu
Affiliation:
Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, P.R. China e-mail: pengchengniu@yahoo.com.cn e-mail: oyafei@126.com e-mail: southhan@163.com
Yafei Ou
Affiliation:
Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, P.R. China e-mail: pengchengniu@yahoo.com.cn e-mail: oyafei@126.com e-mail: southhan@163.com
Junqiang Han
Affiliation:
Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, P.R. China e-mail: pengchengniu@yahoo.com.cn e-mail: oyafei@126.com e-mail: southhan@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we establish several weighted ${{L}^{p}}\left( 1\,<\,p\,\infty \right)$ Hardy type inequalities related to the generalized Greiner operator by improving the method of Kombe. Then the best constants in inequalities are discussed by introducing new polar coordinates.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Baras, P., and Goldstein, J. A., The heat equation with a singular potential. Trans. Amer. Math. Soc. 284(1984), no. 1, 121139. doi:10.2307/1999277Google Scholar
[2] Barbatis, G., Filippas, S., and Tertikas, A., A unified approach to improved Lp Hardy inequalities with best constants. Trans. Amer. Math. Soc. 356(2004), no. 6, 21692196. doi:10.1090/S0002-9947-03-03389-0Google Scholar
[3] Beals, R., Gaveau, B., and Greiner, P., On a geometric formula for the fundamental solution of subelliptic Laplacians. Math. Nachr. 181(1996), 81163.Google Scholar
[4] Beals, R., Gaveau, B., and Greiner, P., Uniform hypoelliptic Green's functions. J. Math. Pures Appl. 77(1998), no. 3, 209248.Google Scholar
[5] D’Ambrosio, L., Critical degenerate inequalities on the Heisenberg group. Manuscripta Math. 106(2001), no. 4, 519536. doi:10.1007/s229-001-8031-2Google Scholar
[6] D’Ambrosio, L., Hardy type inequalities related to degenerate elliptic differential operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(2005), no. 3, 451486.Google Scholar
[7] D’Ambrosio, L. and Lucente, S., Nonlinear Liouville theorems for Grushin and Tricomi operators. J. Differential Equations 193(2003), no. 2, 511541. doi:10.1016/S0022-0396(03)00138-4Google Scholar
[8] Azorero, J. Garcia, and Peral, I., Hardy inequalities and some critical elliptic and parabolic problems. J. Differential Equations 144(1998), no. 2, 441476. doi:10.1006/jdeq.1997.3375Google Scholar
[9] Garofalo, N. and Lanconelli, E., Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40(1990), no. 2, 313356.Google Scholar
[10] Goldstein, J. A. and Kombe, I., Nonlinear degenerate parabolic equations on the Heisenberg group. Inter. J. Evol. Equ. 1(2005), no. 1, 122.Google Scholar
[11] Goldstein, J. A. and Kombe, I., Nonlinear degenerate parabolic differential equations with singular lower order term. Adv. Differential Equations 8(2003), no. 10, 11531192.Google Scholar
[12] Greiner, P. C., A fundamental solution for a nonelliptic partial differential operator. Canad. J. Math. 31(1979), no. 5, 11071120.Google Scholar
[13] Greiner, P. C., Spherical harmonics on the Heisenberg group. Canad. Math. Bull. 23(1980), no. 4, 383396.Google Scholar
[14] Hardy, G., Note on a theorem of Hilbert. Math. Z. 6(1920), no. 3-4, 314317. doi:10.1007/BF01199965Google Scholar
[15] Kombe, I., The Hardy inequality and nonlinear parabolic equations on Carnot groups. arXiv:math/0504057.Google Scholar
[16] Kombe, I., Sharp Hardy type inequalities on the Carnot groups. arXiv:math/0501522.Google Scholar
[17] Lindqvist, P., On the equation div(|∇u|p–2 u) + λ|u|p–2 u = 0 . Proc. Amer. Math. Soc. 109(1990), no. 1, 157164. doi:10.2307/2048375Google Scholar
[18] Niu, P., Zhang, H., and Wang, Y., Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Amer. Math. Soc. 129(2001), no. 12, 36233630 (electronic). doi:10.1090/S0002-9939-01-06011-7Google Scholar
[19] Opic, B., and Kufner, A., Hardy-type inequalities. Pitman Research Notes in Mathematics Series 219, Longman Scientific & Technical, Harlow, 1990.Google Scholar
[20] Zhang, H. and Niu, P., Hardy-type inequalities and Pohozaev-type identities for a class of p-degenerate subelliptic operators and applications. Nonlinear Anal. 54(2003), no. 1, 165186. doi:10.1016/S0362-546X(03)00062-2Google Scholar