Hostname: page-component-76c49bb84f-t6sgf Total loading time: 0 Render date: 2025-07-05T03:00:06.052Z Has data issue: false hasContentIssue false

Sign Properties of Green's Functions For Two Classes of Boundary Value Problems

Published online by Cambridge University Press:  20 November 2018

P. W. Eloe*
Affiliation:
Department of Mathematics, University of Dayton Dayton, Ohio 45469
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G(x,s) be the Green's function for the boundary value problem y(n) = 0, Ty = 0, where Ty = 0 represents boundary conditions at two points. The signs of G(x,s) and certain of its partial derivatives with respect to x are determined for two classes of boundary value problems. The results are also carried over to analogous classes of boundary value problems for difference equations.

Information

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 01

References

1. Coddington, E.A and Levinson, N., “Theory of Ordinary Differential Equations,” McGraw-Hill, New York, 1955.Google Scholar
2. Coppel, W.A, “Disconjugacy” Lecture Notes in Mathematics 220, Springer-Verlag, New York/Berlin, 1971.Google Scholar
3. Fort, T., “Finite Differences,” Oxford Univ. Press, Oxford, 1948.Google Scholar
4. Hartman, P., Difference equations: disconjugacy, principal solutions, Green's functions, complete monotonicity, Trans. Amer. Math. Soc. 246(1978), pp. 130.Google Scholar
5. Levin, A. Ju., Non-oscillation of solutions of the equation x(n) + p1(t)x(n-1)+ ... + pn(t)x=0, Russian Math. Surveys, 24(1969), pp. 4399.Google Scholar
6. Peterson, A.C, On the sign of Green's functions, J. Differential Equations, 21(1976), pp. 167178.Google Scholar
7. Peterson, A.C, Existence-Uniqueness for focal-point boundary value problems, SIAM J. Math. Anal. 12(1981), pp. 173185.Google Scholar
8. Peterson, A.C, Boundary value problems for an n-th order linear difference equation, SIAM J. Math. Anal. 15 (1984), pp. 124132.Google Scholar
9. Ridenhour, J., On the sign of Green s functions for multipoint boundary value problems, Pacific J. Math., 92(1981), pp. 141150.Google Scholar