Hostname: page-component-5d59c44645-l48q4 Total loading time: 0 Render date: 2024-02-24T07:36:55.051Z Has data issue: false hasContentIssue false

SNC Log Symplectic Structures on Fano Products

Published online by Cambridge University Press:  24 February 2020

Katsuhiko Okumura*
Department of Mathematics, Waseda University, Ookubo, Shinjuku-ku, Tokyo, 169-8555, Japan Email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper classifies Poisson structures with the reduced simple normal crossing divisor on a product of Fano varieties of Picard number 1. The characterization of even-dimensional projective spaces from the viewpoint of Poisson structures is given by Lima and Pereira. In this paper, we generalize the characterization of projective spaces to any dimension.

Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
© Canadian Mathematical Society 2020


Cavalcanti, G. R., Examples and counter-examples of log-symplectic manifolds. J. Topol. 10(2017), 121. Scholar
Fujita, T., Classifications of projective varieties of 𝛥-genus one. Proc. Japan Acad. Ser. A Math. Soc. 58(1982), 113116.CrossRefGoogle Scholar
Fujita, T., On polarized varieties of small 𝛥-genera. Tohoku Math. J. (2) 34(1982), 319341. Scholar
Goto, R., Rozansky-witten invariants of log symplectic manifolds. In: Integrable systems, topology, and physics (Tokyo, 2000). Comtemp. Math., 309, Amer. Math. Soc., Providence, RI, 2002, pp. 6984. Scholar
Gualtieri, M. and Li, S., Symplectic groupoids of log symplectic manifolds. Int. Math. Res. Not. IMRN 2014, no. 11, 30223074. Scholar
Gualtieri, M. and Pym, B., Poisson modules and degeneracy loci. Proc. Lond. Math. Soc. 107(2013), 627654. Scholar
Guillemin, V., Miranda, E., and Pires, A. R., Symplectic and poisson geometry on b-manifolds. Adv. Math. 264(2014), 864896. Scholar
Kobayashi, S. and Ochiai, T., Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13(1973), 3147. Scholar
Lazarsfeld, R., Positivity in algebraic geometry. Vol. 1, Springer-Verlag, Berlin, 2004. Scholar
Lima, R. and Pereira, J. V., A characterization of diagonal poisson structure. Bull. Lond. Math. Soc. 46(2014), 12031217. Scholar
Mǎcut, I. and Torres, B. O., Deformations of log-symplectic structures. J. Lond. Math. Soc. (2) 90(2014), 197212. Scholar
O’Grady, K. G., A new six-dimensional irreducible symplectic variety. J. Algebraic Geom. 12(2003), 435505. Scholar
Okumura, K., A classification of SNC log symplectic structures on blow-up of projective spaces.Google Scholar
Pym, B., Constructions and classifications of projective poisson varieties. Lett. Math. Phys. 108(2017), 573632. ScholarPubMed
Pym, B., Elliptic singularities on log symplectic manifolds and Feiginn–Odesskii Poisson brackets. Compos. Math. 153(2017), 717744. Scholar
Radko, O., A classification of topologically stable poisson structures on a compact oriented surface. J. Symplectic Geom. 1(2002), 523542.CrossRefGoogle Scholar