Hostname: page-component-7dd5485656-bvgqh Total loading time: 0 Render date: 2025-10-26T09:57:31.234Z Has data issue: false hasContentIssue false

Some characterizations of unbounded Dunford–Pettis operators

Published online by Cambridge University Press:  15 September 2025

Sanaa Boumnidel
Affiliation:
Department of Mathematics, Faculty Polydisciplinary of Larache, Abdelmalek Essaadi University , P.O. Box 745, Larache 92004, Morocco e-mail: bsanouaa@gmail.com
Abdelmonaim El Kaddouri*
Affiliation:
Engineering Sciences Laboratory, National School of Applied Sciences (ENSAK), Ibn Tofail University , B.P. 241, Kenitra 14000, Morocco e-mail: moulayothman.aboutafail@uit.ac.ma
Moulay Othman Aboutafail
Affiliation:
Engineering Sciences Laboratory, National School of Applied Sciences (ENSAK), Ibn Tofail University , B.P. 241, Kenitra 14000, Morocco e-mail: moulayothman.aboutafail@uit.ac.ma

Abstract

We give some characterizations of $\sigma $-unbounded Dunford–Pettis operators (whenever $x_{n}\overset {uaw}{\longrightarrow } 0$ implies that $T(x_{n})\overset {un}{\longrightarrow } 0$). In addition, we study some properties of this operator, some other interesting results are also obtained.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aliprantis, C. D. and Burkinshaw, O., Positive operators, Springer, Berlin, 2006.10.1007/978-1-4020-5008-4CrossRefGoogle Scholar
Deng, Y., O’Brien, M., and Troitsky, V. G., Unbounded norm convergence in Banach lattices . Positivity 451(2017), no. 1, 259279.Google Scholar
Erkursun-Ozcan, N., Anil Gezer, N., and Zabeti, O., Unbounded absolutely weak Dunford-Pettis operators . Turk. J. Math. 43(2019), 27312740.10.3906/mat-1904-27CrossRefGoogle Scholar
Kandić, M., Marabeh, M. A. A., and Troitsky, V. G., Unbounded norm topology in Banach lattices . J. Math. Anal. Appl. 451(2017), 259279.10.1016/j.jmaa.2017.01.041CrossRefGoogle Scholar
Meyer-Nieberg, P., Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.10.1007/978-3-642-76724-1CrossRefGoogle Scholar
Ouyang, M., Chen, Z., Chen, J., and Wang, Z. $\sigma$ -Unbounded Dunford-Pettis operators on Banach lattices. Preprint, 2019, arXiv:1909.07681v2.Google Scholar
Troistky, V. G., Measure of non-compactness of operators on Banach lattices , Positivity. 8(2004), no. (2), 165178.Google Scholar
Wang, Z. and Chen, Z., Continuous operators for unbounded convergence in Banach lattices . Mathematics 10(2022), no. 6, 966.10.3390/math10060966CrossRefGoogle Scholar
Zabeti, O., Unbounded absolute weak convergence in Banach lattices . Positivity 22(2018), no. 1, 501505.10.1007/s11117-017-0524-7CrossRefGoogle Scholar