Skip to main content
×
×
Home

Spectral Flow Argument Localizing an Odd Index Pairing

  • Terry A. Loring (a1) and Hermann Schulz-Baldes (a2)
Abstract

An odd Fredholm module for a given invertible operator on a Hilbert space is specified by an unbounded so-called Dirac operator with compact resolvent and bounded commutator with the given invertible. Associated with this is an index pairing in terms of a Fredholm operator with Noether index. Here it is shown by a spectral flow argument how this index can be calculated as the signature of a finite dimensional matrix called the spectral localizer.

Copyright
Footnotes
Hide All

The authors thank the Simons Foundation (CGM 419432), the NSF (DMS 1700102), and the DFG (SCHU 1358/3-4) for financial support.

Footnotes
References
Hide All
[1] Atiyah, M. F., Patodi, V. K., and Singer, I. M., Spectral asymmetry and Riemannian geometry. III . Math. Proc. Cambridge Philos. Soc. 79(1976), 7199. https://doi.org/10.1017/S0305004100052105.
[2] Benameur, M.-T., Carey, A. L., Phillips, J., Rennie, A., Sukochev, F. A., and Wojciechowski, K. P., An analytic approach to spectral flow in von Neumann algebras . In: Analysis, geometry and topology of elliptic operators, World Scientific, Hackensack, NJ, 2006, pp. 297352.
[3] Carey, A. L. and Phillips, J., Spectral flow in Fredholm modules, eta invariants and the JLO cocycle . K-Theory 31(2004), 135194. https://doi.org/10.1023/B:KTHE.0000022922.68170.61.
[4] Connes, A., Noncommutative geometry. Academic Press, San Diego, CA, 1994.
[5] De Nittis, G. and Schulz-Baldes, H., Spectral flows of dilations of Fredholm operators . Canad. Math. Bull. 58(2015), 5168. https://doi.org/10.4153/CMB-2014-055-3.
[6] Gracia-Bondía, J. M., Várilly, J. C., and Figueroa, H., Elements of noncommutative geometry . Birkhäuser Advanced Texts. Birkhäuser Boston, Boston, MA, 2013.
[7] Grossmann, J. and Schulz-Baldes, H., Index pairings in presence of symmetries with applications to topological insulators . Comm. Math. Phys. 343(2016), 477513. https://doi.org/10.1007/s00220-015-2530-6.
[8] Loring, T. A., K-theory and pseudospectra for topological insulators . Ann. Physics 356(2015), 383416. https://doi.org/10.1016/j.aop.2015.02.031.
[9] Loring, T. A. and Schulz-Baldes, H., Finite volume calculations of K-theory invariants . New York J. Math. 22(2017), 11111140.
[10] Phillips, J., Self-adjoint Fredholm operators and spectral flow . Canad. Math. Bull. 39(1996), 460467. https://doi.org/10.4153/CMB-1996-054-4.
[11] Phillips, J., Spectral flow in type I and type II factors—a new approach. In: Cyclic cohomology and noncommutative geometry, Fields Inst. Commun., 17, American Mathematical Society, Proidence, RI, pp. 137–153.
[12] Prodan, E. and Schulz-Baldes, H., Bulk and boundary invariants for complex topological insulators: From K-theory to physics . Springer Int. Pub., Szwitzerland, 2016. https://doi.org/10.1007/978-3-319-29351-6.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed