Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-4btjb Total loading time: 0.345 Render date: 2022-05-24T07:13:10.272Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Spectral Flow Argument Localizing an Odd Index Pairing

Published online by Cambridge University Press:  07 January 2019

Terry A. Loring
Affiliation:
University of New Mexico, Albuquerque, NM 87131, United States Email: loring@math.unm.edu
Hermann Schulz-Baldes
Affiliation:
Department Mathematik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91058 Erlangen, Germany Email: schuba@mi.uni-erlangen.de
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An odd Fredholm module for a given invertible operator on a Hilbert space is specified by an unbounded so-called Dirac operator with compact resolvent and bounded commutator with the given invertible. Associated with this is an index pairing in terms of a Fredholm operator with Noether index. Here it is shown by a spectral flow argument how this index can be calculated as the signature of a finite dimensional matrix called the spectral localizer.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Footnotes

The authors thank the Simons Foundation (CGM 419432), the NSF (DMS 1700102), and the DFG (SCHU 1358/3-4) for financial support.

References

Atiyah, M. F., Patodi, V. K., and Singer, I. M., Spectral asymmetry and Riemannian geometry. III . Math. Proc. Cambridge Philos. Soc. 79(1976), 7199. https://doi.org/10.1017/S0305004100052105.CrossRefGoogle Scholar
Benameur, M.-T., Carey, A. L., Phillips, J., Rennie, A., Sukochev, F. A., and Wojciechowski, K. P., An analytic approach to spectral flow in von Neumann algebras . In: Analysis, geometry and topology of elliptic operators, World Scientific, Hackensack, NJ, 2006, pp. 297352.CrossRefGoogle Scholar
Carey, A. L. and Phillips, J., Spectral flow in Fredholm modules, eta invariants and the JLO cocycle . K-Theory 31(2004), 135194. https://doi.org/10.1023/B:KTHE.0000022922.68170.61.CrossRefGoogle Scholar
Connes, A., Noncommutative geometry. Academic Press, San Diego, CA, 1994.Google Scholar
De Nittis, G. and Schulz-Baldes, H., Spectral flows of dilations of Fredholm operators . Canad. Math. Bull. 58(2015), 5168. https://doi.org/10.4153/CMB-2014-055-3.CrossRefGoogle Scholar
Gracia-Bondía, J. M., Várilly, J. C., and Figueroa, H., Elements of noncommutative geometry . Birkhäuser Advanced Texts. Birkhäuser Boston, Boston, MA, 2013.Google Scholar
Grossmann, J. and Schulz-Baldes, H., Index pairings in presence of symmetries with applications to topological insulators . Comm. Math. Phys. 343(2016), 477513. https://doi.org/10.1007/s00220-015-2530-6.CrossRefGoogle Scholar
Loring, T. A., K-theory and pseudospectra for topological insulators . Ann. Physics 356(2015), 383416. https://doi.org/10.1016/j.aop.2015.02.031.CrossRefGoogle Scholar
Loring, T. A. and Schulz-Baldes, H., Finite volume calculations of K-theory invariants . New York J. Math. 22(2017), 11111140.Google Scholar
Phillips, J., Self-adjoint Fredholm operators and spectral flow . Canad. Math. Bull. 39(1996), 460467. https://doi.org/10.4153/CMB-1996-054-4.CrossRefGoogle Scholar
Phillips, J., Spectral flow in type I and type II factors—a new approach. In: Cyclic cohomology and noncommutative geometry, Fields Inst. Commun., 17, American Mathematical Society, Proidence, RI, pp. 137–153.CrossRefGoogle Scholar
Prodan, E. and Schulz-Baldes, H., Bulk and boundary invariants for complex topological insulators: From K-theory to physics . Springer Int. Pub., Szwitzerland, 2016. https://doi.org/10.1007/978-3-319-29351-6.Google Scholar
You have Access
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spectral Flow Argument Localizing an Odd Index Pairing
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Spectral Flow Argument Localizing an Odd Index Pairing
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Spectral Flow Argument Localizing an Odd Index Pairing
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *