No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Given a complex semisimple Lie algebra   $\mathfrak{g}=\mathfrak{k}+i\mathfrak{k}$  (
 $\mathfrak{g}=\mathfrak{k}+i\mathfrak{k}$  (  $\mathfrak{t}$  is a compact real form of
 $\mathfrak{t}$  is a compact real form of   $\mathfrak{g}$ ), let
 $\mathfrak{g}$ ), let   $\text{ }\pi \text{ }\text{:}\mathfrak{g}\to \mathfrak{h}$  be the orthogonal projection (with respect to the Killing form) onto the Cartan subalgebra
 $\text{ }\pi \text{ }\text{:}\mathfrak{g}\to \mathfrak{h}$  be the orthogonal projection (with respect to the Killing form) onto the Cartan subalgebra   $\mathfrak{h}:=\mathfrak{t}\text{+}i\mathfrak{t}$ , where
 $\mathfrak{h}:=\mathfrak{t}\text{+}i\mathfrak{t}$ , where   $\mathfrak{t}$  is a maximal abelian subalgebra of
 $\mathfrak{t}$  is a maximal abelian subalgebra of   $\mathfrak{k}$ . Given
 $\mathfrak{k}$ . Given   $x\,\in \,\mathfrak{g}$ , we consider
 $x\,\in \,\mathfrak{g}$ , we consider   $\text{ }\!\!\pi\!\!\text{ (Ad(}K\text{)}x)$ , where
 $\text{ }\!\!\pi\!\!\text{ (Ad(}K\text{)}x)$ , where   $K$  is the analytic subgroup
 $K$  is the analytic subgroup   $G$  corresponding to
 $G$  corresponding to   $\mathfrak{k}$ , and show that it is star-shaped. The result extends a result of Tsing. We also consider the generalized numerical range
 $\mathfrak{k}$ , and show that it is star-shaped. The result extends a result of Tsing. We also consider the generalized numerical range   $f(\text{Ad(}K\text{)}x)$ , where
 $f(\text{Ad(}K\text{)}x)$ , where   $f$  is a linear functional on
 $f$  is a linear functional on   $\mathfrak{g}$ . We establish the star-shapedness of
 $\mathfrak{g}$ . We establish the star-shapedness of   $f(\text{Ad(}K\text{)}x)$  for simple Lie algebras of type
 $f(\text{Ad(}K\text{)}x)$  for simple Lie algebras of type   $B$ .
 $B$ .