[1]
The Selberg trace formula for groups of F-rank one. Ann. of Math. 100 (1974), 326–385.

[2]
Some tempered distributions on groups of real rank one. Ann. of Math. 100 (1974), 553–584.

[3]
A theorem on the Schwartz space of a reductive Lie group. Proc. Nat. Acad. Sci. 72 (1975), 4718–4719.

[4]
The characters of discrete series as orbital integrals. Invent.Math. 32 (1976), 205–261.

[5]
A truncation process for reductive groups. Bull. Amer. Math. Soc. 83 (1977), 748–750.

[6]
Eisenstein series and the trace formula. Proc. Sympos. Pure Math. 33(1979), Part 1, 253–274.

[7]
A trace formula for reductive groups I: Terms associated to classes in G(Q). Duke Math. J. 245 (1978), 911–952.

[8]
Harmonic analysis of invariant distributions. Lie theories and their applications (Queen's University, 1977), Queen's Papers in Pure and Appl. Math. 48 (1978), 384–393.

[9]
A trace formula for reductive groups II: Applications of a truncation operator. Compositio Math. 40 (1980), 87–121.

[10]
The trace formula in invariant form. Ann. of Math. 114 (1981), 1–74.

[11]
Automorphic representations and number theory. C.M.S. Conf. Proc. 1 (1981), 3–51.

[12]
On the inner product of truncated Eisenstein series. Duke Math. J. 49 (1982), 35–70.

[13]
On a family of distributions obtained from Eisenstein series I: Application of the Paley-Wiener theorem. Amer. J. Math. 104 (1982), 1243–1288.

[14]
On a family of distributions obtained from Eisenstein series II: Explicit formulas. Amer. J. Math. 104 (1982), 1289–1336.

[15]
A Paley-Wiener theorem for real reductive groups. Acta Math. 150 (1983), 1–89.

[16]
The trace formula for reductive groups. Publ. Math. Univ. Paris VII 15 (1983), 1–41.

[17]
Multipliers and a Paley-Wiener theorem for real reductive groups. Representation Theory of Reductive Groups (Park City, Utah, 1982), Progr. Math. 40 (1983), 1–19.

[18]
On some problems suggested by the trace formula. Lie Group Representations II, Springer Lecture Notes in Math. 1041 (1984), 1–49.

[19]
*The trace formula for noncompact quotient.* In: Proceedings of International Congress of Mathematicians (Warsaw, 1983), PWN, Warsaw, 1984, 849–859.

[20]
A measure on the unipotent variety. Canad. J. Math. 37 (1985), 1237–1274.

[21]
On a family of distributions obtained from orbits. Canad. J. Math. 38 (1986), 179–214.

[22]
The Fourier transform of weighted orbital integrals on SL(2, R).With R. Herb and P. Sally. Contemp. Math. 53 (1986), 17–37.

[23]
The characters of supercuspidal representations as weighted orbital integrals. Proc. Indian Acad. Sci. 97 (1987), 3–19.

[24]
The local behaviour of weighted orbital integrals. Duke Math. J. 56 (1988), 223–293.

[25]
Characters, harmonic analysis, and an L2-Lefschetz formula. Proc. Sympos. Pure Math. 48 (1988), 167–179.

[26]
The invariant trace formula I. Local theory. J. Amer. Math. Soc. 1 (1988), 323–383.

[27]
The invariant trace formula II. Global theory. J. Amer. Math. Soc. 1 (1988), 501–554.

[28]
Intertwining operators and residues I.Weighted characters. J. Funct. Anal. 84 (1989), 19–84.

[29]
Intertwining operators and residues II. Invariant distributions. Compositio Math. 70 (1989), 51–99.

[30]
Simple Algebras, Base Change and the Advanced Theory of the Trace Formula.With L. Clozel. Ann. of Math. Stud. 120, Princeton University Press, 1989.

[31]
The trace formula and Hecke operators. In: Number Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 11–27.

[32]
The L2-Lefschetz numbers of Hecke operators. Invent.Math. 97 (1989), 257–290.

[33]
*Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one.* In: Representation Theory and Harmonic Analysis on Semisimple Lie Groups (eds. P. Sally and D. Vogan),Math. SurveysMonographs 31, Amer. Math. Soc., 1989, 13–100.

[34]
Unipotent automorphic representations: Conjectures. Astérisque 171–172 (1989), 13–71.

[35]
Unipotent automorphic representations: Global Motivation. In: Automorphic Forms, Shimura Varieties and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect.Math. 10 (1989), 1–75.

[36]
Towards a local trace formula. In: Proceedings of First JAMI Conference, Johns Hopkins University Press, 1990, 1–23.

[37]
Lectures on automorphic L-functions. With S. Gelbart. L-functions and Arithmetic (Durham, 1990), London Math. Soc. Lecture Note Ser. 153 (1991), 1–59.

[38]
Some problems in local harmonic analysis. Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progr.Math. 101 (1991), 57–78.

[39]
A local trace formula. Inst. Hautes Études Sci. Publ. Math. 73 (1991), 5–96.

[40]
On elliptic tempered characters. Acta Math. 171 (1993), 73–138.

[41]
On the Fourier transforms of weighted orbital integrals. J. Reine Angew. Math. 452 (1994), 163–217.

[42]
The trace Paley-Wiener theorem for Schwartz functions. Contemp.Math. 177 (1994), 171–180.

[43]
*L*^{2}-cohomology and automorphic representations. In: Canadian Mathematical Society 1945–1995, Vol. 3, Canadian Math. Soc., Ottawa, 1996, 1–17.

[44]
On local character relations. Selecta Math. 2 (1996), 501–579.

[45]
The problem of classifying automorphic representations of classical groups. CRM Proc. Lecture Notes 11 (1997), 1–12.

[46]
Stability and endoscopy: informal motivation. Proc. Sympos. Pure Math. 61 (1997), 433–442.

[47]
Canonical normalization of weighted characters and a transfer conjecture. C. R. Math. Rep. Acad. Sci. Canada 20 (1998), 35–52.

[48]
*Towards a stable trace formula.* In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. 1998, Extra Vol. II, 507–517.

[49]
On the transfer of distributions: weighted orbital integrals. Duke Math. J. 99 (1999), 209–283.

[50]
Endoscopic L-functions and a combinatorial identity. Canad. J. Math. 51 (1999), 1135–1148.

[51]
Stabilization of a family of differential equations. Mathematical Legacy of Harish-Chandra (Baltimore, MD, 1998), Proc. Sympos. Pure Math. 68 (2000), 77–95.

[52]
Harmonic analysis and group representations. Notices Amer. Math. Soc. 47 (2000), 26–34.

[53]
*A stable trace formula I. General expansions.* Preprint.

[54]
*A stable trace formula II. Global descent.* Invent.Math., to appear.

[55]
*A stable trace formula III. Proof of the main theorems.* Preprint.

[56]
*The principle of functoriality.* Submitted to Mathematical Challenges of the 21st Century.

[ABV]
Adams, J., Barbasch, D. and Vogan, D., The Langlands classification and irreducible characters for real reductive groups. Progr. Math. 104, Birkhäuser, 1992.

[CD]
Clozel, L. and Delorme, P., Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. Invent.Math. 77 (1984), 427–453; *Sur le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs réels.* C. R. Acad. Sci. Paris. Sér. 1 Math. 300 (1985), 331–333.

[HPS]
Howe, R. and Piatetski-Shapiro, I., A counterexample to the “generalized Ramanujan conjecture” for (quasi-)split groups. Automorphic forms, representations and L-functions (Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math. 33 (1979), 315–322.

[J]
Jacquet, H., On the residual spectrum of GL(n). Lie Group Representations II, Springer Lecture Notes in Math. 1041 (1984), 185–208.

[JL]
Jacquet, H. and Langlands, R. P., *Automorphic forms on GL(2)*. Springer Lecture Notes in Math. 114, 1970.

[K1]
Kottwitz, R. E., Tamagawa numbers. Ann. of Math. 127 (1988), 629–646.

[K2]
Kottwitz, R. E., On the ƛ-adic representations associated to some simple Shimura varieties. Invent.Math. 108 (1992), 653–665

[KS]
Kottwitz, R. and Shelstad, D., *Foundations of twisted endoscopy.* Astérisque 255, 1999.

[LL]
Labesse, J.-P. and Langlands, R. P., L-indistinguishability for SL(2). Canad. J. Math. 31 (1979), 726–785.

[KL]
Langlands, R., Les débuts d’une formule des traces stables. Publ. Math. Univ. Paris VII 13, Paris, 1983; R. Kottwitz, Stable trace formula: cuspidal tempered terms. Duke Math. J. 51 (1984), 611–650; , *Stable trace formula: elliptic singular terms.* Math. Ann. 275 (1986), 365–399.

[L]
Langlands, R. P., Rank-one residues of Eisenstein series. Israel Math, Conf. Proc. 3 (1990), 111–125.

[LS]
Langlands, R. P. and Shelstad, D., On the definition of transfer factors.Math. Ann. 278 (1987), 219–271.

[Mo]
Moeglin, C., Représentations unipotentes et formes automorphes de carré intégrable. Forum Math. 6 (1994), 651–744.

[MW]
Moeglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. 22 (1989), 605–674.

[Mü]
Müller, W., The trace class conjecture in the theory of automorphic forms. Ann. of Math. 130 (1989), 473–529.

[R]
Rogawski, J., Automorphic representations of unitary groups in three variables. Ann. of Math. Stud. 123, Princeton University Press, 1990; *The multiplicity formula for A-packets.* In: The zeta functions of Picard modular surfaces (eds. R. P. Langlands and D. Ramakrishnan), Centre de recherches mathématiques, Univ. de Montréal, 1992, 395–419.

[S]
Saito, H., Automorphic forms and extensions of number fields. Lectures in Mathematics 8, Kyoto University, 1975.

[W]
Waldspurger, J.-L., Le lemme fondamental implique le transfert. Compositio Math. 105 (1997), 153–236.