Skip to main content

VB-Courant Algebroids, E-Courant Algebroids and Generalized Geometry

  • Honglei Lang (a1), Yunhe Sheng (a2) and Aïssa Wade (a3)

In this paper, we first discuss the relation between VB-Courant algebroids and E-Courant algebroids, and we construct some examples of E-Courant algebroids. Then we introduce the notion of a generalized complex structure on an E-Courant algebroid, unifying the usual generalized complex structures on even-dimensional manifolds and generalized contact structures on odd-dimensional manifolds. Moreover, we study generalized complex structures on an omni-Lie algebroid in detail. In particular, we show that generalized complex structures on an omni-Lie algebra gl(V) ⊕ V correspond to complex Lie algebra structures on V.

Hide All
[1] Barton, J. and Stienon, M., Generalized complex submanifolds. Pacific J. Math. 236(2008), no. 1, 2344.
[2] Baraglia, D., Conformal Courant algebroids and orientifold T-duality. Int. J. Geom. Methods Mod. Phys. 10(2013), no. 2, 1250084. http://dx.doi.Org/10.1142/S0219887812500843
[3] Bursztyn, H., Cavalcanti, G., and Gualtieri, M., Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211(2007), no. 2, 726765. http://dx.doi.Org/10.1016/j.aim.2006.09.008
[4] Chen, Z. and Liu, Z. J., Omni-Lie algebroids. J. Geom. Phys. 60(2010), no. 5, 799808. http://dx.doi.Org/10.1016/j.geomphys.2010.01.007
[5] Chen, Z., Liu, Z. J., and Sheng, Y. H., E-Courant algebroids. Int. Math. Res. Not. IMRN 2010, no. 22, 4334-4376. http://dx.doi.Org/10.1093/imrn/rnq053
[6] Crainic, M., Generalized complex structures and Lie brackets. Bull. Braz. Math. Soc. (N.S.) 42(2011), no. 4, 559578.
[7] Grabowski, J. and Marmo, G., The graded facobi algebras and (co)homology. J. Phys. A 36(2003), no. 2, 161181. http://dx.doi.Org/10.1088/0305-4470/36/1/311
[8] Gualtieri, M., Generalized complex geometry. Ann. of Math. (2) 174(2011), no. 1, 75123. http://dx.doi.Org/10.4007/annals.2011.174.1.3
[9] Hitchin, N. J., Generalized Calabi-Yau manifolds. Q. J. Math. 54(2003), no. 3, 281308.
[10] Iglesias-Ponte, D. and Wade, A., Contact manifold and generalized complex structures. I. Geom. Phys. 53(2005), no. 3, 249258. http://dx.doi.Org/10.1016/j.geomphys.2004.06.006
[11] Jotz Lean, M., N-manifolds of degree 2 and metric double vector bundles. arxiv:1504.00880
[12] Kirillov, A., Local Lie algebras. Russian Math. Surveys 31(1976), 5576. http://dx.doi.Org/10.1070/RM1976v031n04ABEH001556
[13] Lang, H., Sheng, Y., and Xu, X., Nonabelian omni-Lie algebras. In: Geometry of jets and fields, Banach Center Publ., 110, Polish Acad. Sei. Inst. Math., Warsaw, 2016, pp. 167176.
[14] Li-Bland, D., AV-Courant algebroids and generalized CR structures. Canad. J. Math. 63(2011), no. 4, 938960.
[15] Li-Bland, D., JZ-A-Courant algebroids and their applications. Thesis, University of Toronto, 2012. arxiv:1204.2796v1
[16] Li-Bland, D. and Meinrenken, E., Courant algebroids and Poisson geometry. Int. Math. Res. Not. IMRN 11(2009), 21062145. http://dx.doi.Org/10.1093/imrn/rnp048
[17] Liu, Z. J., Weinstein, A., and Xu, P., Manin triplesfor Lie bialgebroids. J. Differential Geom. 45(1997), no. 3, 547574.
[18] Mackenzie, K., General theories of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005. http://dx.doi.Org/10.1017/CBO9781107325883
[19] Mackenzie, K., Ehresmann doubles and Drindel'd doublesfor Lie algebroids and Lie bialgebroids. J. Reine Angew. Math. 658(2011), 193245. http://dx.doi.Org/10.1515/CRELLE.2011.092
[20] Roytenberg, D., Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, University of California Berkeley, 1999. arxiv:math.DG/9910078
[21] Sheng, Y., On deformations of Lie algebroids. Results. Math. 62(2012), no. 1-2, 103120. http://dx.doi.Org/10.1007/s00025-011-0133-x
[22] Stienon, M. and Xu, P., Reduction of generalized complex structures. J. Geom. Phys. 58(2008), no. 1, 105121. http://dx.doi.Org/10.1016/j.geomphys.2007.09.009
[23] Vitagliano, L. and Wade, A., Generalized contact bundles. C. R. Math. Acad. Sei. Paris 354(2016), no. 3, 313317. http://dx.doi.Org/10.1016/j.crma.2015.12.009
[24] Vitagliano, L. and Wade, A., Holomorphic Jacobi manifolds. arxiv:1 609.07737
[25] Weinstein, A., Omni-Lie algebras. Microlocal analysis ofthe Schrödinger equation and related topics. (Japanese) (Kyoto, 1999), Sürikaisekikenkyüsho Kökyüroku 1176(2000), 95102.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed