Skip to main content Accessibility help

Association of macrophage migration inhibitory factor and mannose-binding lectin-2 gene polymorphisms in acute rheumatic fever

  • Nilgun Col-Araz (a1), Sacide Pehlivan (a2), Osman Baspinar (a3), Tugce Sever (a2), Sibel Oguzkan-Balci (a2) and Ayse Balat (a4)...



Macrophage migration inhibitory factor and mannose-binding lectin-2 play important roles in the pathogenesis of several acute and chronic inflammatory/autoimmune disorders. The aim of the study was to investigate any possible association between migration inhibitory factor and mannose-binding lectin-2 gene polymorphisms and acute rheumatic fever in children.

Material and methods

A total of 38 unrelated children with acute rheumatic fever and 40 age- and sex-matched healthy controls were analysed for codon 54 A/B polymorphism in mannose-binding lectin-2 gene and −173 G/C polymorphism in migration inhibitory factor gene by using the polymerase chain reaction method.


Frequency of BB genotype of mannose-binding lectin-2 gene was higher in the patient group. Interestingly, children with acute rheumatic fever with AA genotype tended to have chorea compared with children with BB genotype. There was a statistically significant increase in frequency of the migration inhibitory factor −173 CC genotype in patients compared with the control subjects.


The present study is the first to investigate the mannose-binding lectin-2gene polymorphism in children with acute rheumatic fever. BB genotype of mannose-binding lectin-2 (codon 54) and CC genotype of migration inhibitory factor (−173) may have a role in the immunoinflammatory process of acute rheumatic fever.


Corresponding author

Correspondence to: Dr N. Col-Araz, MD, Department of Pediatrics, Gaziantep University Hospital, 27310 Gaziantep, Turkey. Tel: +90 3423606060; Fax: +90 342 3602799; E-mail:


Hide All
1. Carapetis, JR, McDonald, M, Wilson, NJ. Acute rheumatic fever. Lancet 2005; 366: 155168.
2. Guilherme, L, Ramasawmy, R, Kalil, J. Rheumatic fever and rheumatic heart disease: genetics and pathogenesis. Scand J Immunol 2007; 66: 199207.
3. Ruskamp, JM, Hoekstra, MO, Rovers, MM, Schilder, AGM, Sanders, EAM. Mannose-binding lectin and upper respiratory tract infections in children and adolescents. Arch Otolaryngol Head Neck Surg 2006; 132: 482486.
4. Renner, P, Roger, T, Calandra, T. Macrophage migration inhibitory factor: gene polymorphisms and susceptibility to inflammatory diseases. Clin Infect Dis 2005; 41 Suppl 7: 1319.
5. Turner, MW. The role of mannose-binding lectin in health and disease. Mol Immunol 2003; 40: 423429.
6. Messias Reason, LJ, Schafranski, MD, Jensenius, JC, Steffensen, R. The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol 2006; 67: 991998.
7. Ramasawmy, R, Spina, SG, Fae, KC, et al. Association of mannose-binding lectin gene polymorphism but not of mannose-binding serine protease 2 with chronic severe aortic regurgitation of rheumatic etiology. Clin Vaccine Immunol 2008; 15: 932936.
8. Schafranski, MD, Ferrari, LP, Scherner, D, Torres, R, Jensenius, JC, Messias Reason, LJ. High-producing MBL2 genotypes increase the risk of acute and chronic carditis in patients with history of rheumatic fever. Mol Immunol 2008; 45: 38273831.
9. Calandra, T, Spiegel, LA, Metz, CN, Bucala, R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of gram-positive bacteria. Proc Natl Acad Sci U S A 1998; 95: 1138311388.
10. Miller, SA, Dykes, DD, Polesky, HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.
11. Vardar, F, Pehlivan, S, Onay, H, et al. Association between mannose binding lectin polymorphisms and predisposition to bacterial meningitis. Turk J Pediatr 2007; 49: 270273.
12. Akcali, A, Pehlivan, S, Pehlivan, M, Sever, T, Neyal, M. Association of macrophage migration inhibitory factor gene promoter polymorphisms with multiple sclerosis in Turkish patients. J Int Med Res 2010; 38: 6977.
13. Strom TM, Wienker TF. http:/
14. Guilherme, L, Kalil, J. Rheumatic fever: the T cell response leading to autoimmune aggression in the heart. Autoimmun Rev 2002; 1: 261266.
15. Froidevaux, C, Roger, T, Martin, C, Glauser, MP, Calandra, T. Macrophage migration inhibitory factor and innate immune responses to bacterial infections. Crit Care Med 2001; 29: 1315.
16. Worthley, DL, Bardy, PG, Mullighan, CG. Mannose-binding lectin: biology and clinical implications. Intern Med J 2005; 35: 548555.
17. Takahashi, K, Ip, WKE, Michelow, IC, Ezekowitz, RAB. The mannose-binding lectin: a prototypic pattern recognition molecule. Curr Opin Immunol 2006; 18: 1623.
18. Garred, P, Larsen, F, Madsen, HO, Koch, C. Mannose-binding lectin deficiency-revisited. Mol Immunol 2003; 40: 7384.
19. Dale, RC. Post-streptococcal autoimmune disorders of the central nervous system. Dev Med Child Neurol 2005; 47: 785791.
20. Garred, P, Madsen, HO, Marquarth, H, et al. Two edged role of mannose binding lectin in rheumatoid arthritis: a cross sectional study. J Rheumatol 2000; 27: 2634.
21. Berdeli, A, Özyürek, AY, Ülger, Z, et al. Association of macrophage migration inhibitory factor gene −173G/C polymorphism with prognosis in Turkish children with juvenile rheumatoid arthritis. Rheumatol Int 2006; 26: 726731.
22. Donn, R, Alourfi, Z, De Benedetti, F, et al British Paediatric Rheumatology Study Group. Mutation screening of the macrophage migration inhibitory factor gene. Positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum 2002; 46: 24022409.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed