Skip to main content
    • Aa
    • Aa

Can whole-blood parameters be used in follow-up of children with rheumatic valvular heart disease?

  • Derya Karpuz (a1) (a2), Dilek Giray (a1) (a2), Abdullah Ozyurt (a3), Gulcin Bozlu (a1), Selma Unal (a1) (a4) and Olgu Hallioglu (a1) (a2)...
Abstract Objectives

The aim of the present study was to investigate the relationships between red blood cell distribution width, platelet distribution width, and mean platelet volume and the presence and severity of valvular involvement in patients with rheumatic heart disease.


Between April, 2012 and December, 2015, 151 patients who were admitted to the Pediatric Cardiology Unit with diagnosis of rheumatic heart disease and 148 healthy children were included to our study. Transthoracic echocardiography for all children was performed, and the values of red blood cell distribution width, platelet distribution width, and mean platelet volume, besides other blood count parameters, erythrocyte sedimentation rate, and C-reactive protein levels were recorded.


Red blood cell distribution width, platelet distribution width, mean platelet volume, and C-reactive protein levels were significantly higher in patients with rheumatic heart disease when compared with healthy controls (p<0.01). Red blood cell distribution width was positively correlated with both C-reactive protein (r=0.271, p=0.035) and erythrocyte sedimentation rate (r=0.308, p=0.006). When single valve involvement was compared with both aortic valve and mitral valve involvement in the study group, red blood cell distribution width and platelet distribution width were higher in patients with double valve involvement; however, this was not statistically significant (p>0.05).


This is the first study in children with rheumatic heart disease that demonstrated significantly increased red blood cell distribution width, platelet distribution width, and mean platelet volume levels, as well as evaluated all three parameters together. Furthermore, red blood cell distribution width values in the chronical period of acute rheumatic fever, due to the positive correlation with the other chronic inflammatory markers, may help make the diagnosis in children.

Corresponding author
Correspondence to: D. Karpuz, MD, Department of Pediatrics, Divison of Pediatric Cardiology, University of Mersin Faculty of Medicine, 34. Cadde, Ciftlikkoy Kampusu 33343 Mersin, Turkey. Tel: +90 324 241 0000; Fax: +90 324 241 0000; E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. JR Carapetis , AC Steer , EK Mulholland , M Weber . The global burden of group a streptococcal diseases. Lancet Infect Dis 2005; 5: 685694.

3. L Guilherme , P Cyry , LM Demarchi . Rheumatic heart disease: proinflamatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol 2004; 165: 15831591.

4. A Settin , H Abdel-Hady , R El-baz , I Saber . Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol 2007; 28: 363371.

5. Z Förhécz , T Gombos , G Borgulya , Z Pozsonyi , Z Prohászka , L Jánoskuti . Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 2009; 158: 659666.

6. B Güngör , KS Ozcan , F Ozpamuk Karadeniz , et al. Red cell distribution width is increased in patients with ascending aortic dilatation. Turk Kardiyol Dern Ars 2014; 42: 227235.

7. ME Emans , CA Gaillard , R Pfister , et al. Red cell distribution width is associated with physical inactivity and heart failure, independent of established risk factors, inflammation or iron metabolism; the EPIC-Norfolk study. Int J Cardiol 2013; 168: 35503555.

8. T Isik , H Uyarel , IH Tanboga , et al. Relation of red cell distribution width with the presence, severity, and complexity of coronary artery disease. Coron Artery Dis 2012; 23: 5156.

9. M Tonelli , F Sacks , M Arnold , L Moye , B Davis , M Pfeffer . Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation 2008; 117: 163168.

10. PM Bath , RJ Butterworth . Platelet size: measurement, physiology and vascular disease. Blood Coagul Fibrinolysis 1996; 7: 157161.

11. P Herve , M Humbert , O Sitbon , et al. Pathobiology of pulmonary hypertension: the role of platelets and thrombosis. Clin Chest Med 2001; 22: 451458.

12. SC Pitchford , CP Page . Platelet activation in asthma: integral to the inflammatory response. Clin Exp Allergy 2006; 36: 399401.

14. GH Stollerman . Rheumatogenic streptococci and autoimmunity. Clin Immunol Immunopathol 1991; 61: 131142.

15. G Endler , A Klimesch , H Sunder-Plassmann , et al. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br J Haematol 2002; 117: 399404.

16. S Arıca , C Ozer , V Arıca , A Karakus , T Celik , R Gunesacar . Evaluation of the mean platelet volume in children with familial Mediterranean fever. Rheumatol Int 2012; 32: 35593563.

17. R Ozdemir , C Karadeniz , OB Doksoz , et al. Are mean platelet volume and platelet distribution width useful parameters in children with acute rheumatic carditis? Pediatr Cardiol 2014; 35: 5356.

18. A Sert , E Aypar , D Odabas . Mean platelet volume in acute rheumatic fever. Platelets 2013; 24: 378382.

20. GM Felker , LA Allen , SJ Pocock , et al. Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke Databank. J Am Coll Cardiol 2007; 50: 4047.

21. Z Gölbasi , O Uçar , T Keles , et al. Increased levels of high sensitive C-reactive protein in patients with chronic rheumatic valve disease: evidence of ongoing inflammation. Eur J Heart Fail 2002; 4: 593595.

22. YY Chiu-Braga , SY Hayashi , M Schafranski , IJ Messias-Reason . Further evidence of inflammation in chronic rheumatic valve disease (CRVD): high levels of advanced oxidation protein products (AOPP) and high sensitive C-reactive protein (hs-CRP). Int J Cardiol 2006; 109: 275276.

23. TS Perlstein , J Weuve , MA Pfeffer , JA Beckman . Red blood cell distribution width and mortality risk in a communitybased prospective cohort. Arch Intern Med 2009; 169: 588594.

24. JM Lappé , BD Horne , SH Shah , et al. Red cell distribution width, C-reactive protein, the complete blood count, and mortality in patients with coronary disease and a normal comparison population. Clin Chim Acta 2011; 412: 20942099.

26. MK Akboğa , A Abacı , U Canpolat , et al. Association of red blood cell distribution width with presence and severity of rheumatic mitral valve stenosis. Arch Turk Soc Cardiol 2015; 43: 227233.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 274 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.