Skip to main content Accessibility help
×
×
Home

Case report and review of the literature: the utilisation of a ventricular assist device as bridge to recovery for anthracycline-induced ventricular dysfunction

  • Diane Krasnopero (a1), Alfred Asante-Korang (a1), Jeffrey Jacobs (a1) (a2), Stacie Stapleton (a3), Jennifer Carapellucci (a1), Mathew Dotson (a1) and Gary Stapleton (a1)...
Abstract

Ventricular assist devices are used in children with heart failure as a bridge to myocardial recovery or cardiac transplantation. Anthracyclines cause cardiac toxicity and may result in acute or long-term cardiac failure. We describe the use of a ventricular assist device as a bridge to recovery in a child with severe acute anthracycline-induced cardiomyopathy, and we review the associated literature. A 6-year-old girl was treated for acute myeloblastic leukaemia with daunorubicin and mitoxantrone. After 2 weeks her final dose of chemotherapy, her Left Ventricular Ejection Fraction decreased to 21%. Despite initiation of medical therapy, she had continued deterioration of left ventricular function and developed evidence of poor end-organ perfusion. She was not a candidate for cardiac transplantation, as the post-transplant immune suppression therapy would put her at risk for recurrence of her malignancy. We placed her on a short-term ventricular assist device as a bridge to ultimately placing her on a long-term ventricular assist device versus continuing medical therapy. Her left ventricular ejection fraction improved to 55% 24 days after ventricular assist device insertion. She was separated from the ventricular assist device 26 days after its insertion. She was discharged home 29 days later and is now 28 months after ventricular assist device implantation with stable ventricular function, as documented by a left ventricular ejection fraction of 55%, and normal end organ function. This case is one of the only reports known describing successful use of a short-term ventricular assist device as a bridge to recovery in a child with severe acute anthracycline-induced cardiotoxicity.

Copyright
Corresponding author
Correspondence to: D. Krasnopero, DNP, Johns Hopkins All Children’s Heart Institute, Johns Hopkins All Children’s Hospital 601 5th Street South, Suite 206, St. Petersburg, FL 33701, United States of America. Tel: 727 767 3333; Fax: 727 767 8990; E-mail: dkrasno1@jhmi.edu
References
Hide All
1. The NIH National Cancer Institute. Bortezomib and sorafenib tosylate in treating patients with newly diagnosed acute myeloid leukemia. Retrieved December 23, 2016 from https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/view?cdrid=701850.
2. Baumann Kreuziger, LM. Management of anticoagulation and antiplatelet therapy in patients with left ventricular assist devices. J Thromb Thrombolysis 2015; 39: 337344.
3. Edmonton Anticoagulation and Platelet Inhibition Protocol. Retrieved December 23, 2016 from http://www.meduniwien.ac.at/kiklipedia/images/9/9a/Edmonton_Protokoll_Antikoagulation.pdf.
4. Smith, LA, Cornelius, VR, Plummer, CJ, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomized controlled trials. BMC Cancer 2010; 10: 337.
5. Harake, D, Franco, V, Henkel, J, Miller, T, Lipshultz, S. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol 2012; 8: 647670.
6. Krischer, JP, Epstein, S, Cuthbertson, DD, Goorin, AM, Epstein, ML, Lipshultz, SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: The Pediatric Oncology Group experience. J Clin Oncol 1997; 15: 15441552.
7. van Dalen, EC, van der Pal, HJH, Bakker, PJM, Caron, HN, Kremer, LCM. Cumulative incidence and risk factors of mitoxantrone-induced cardiotoxicity in children: a systematic review. Eur J Cancer 2003; 40: 643652.
8. Gharib, MI, Burnett, AK. Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Failure 2002; 4: 235242.
9. Posner, LE, Dukart, G, Goldberg, J, Bernstein, T, Cartwright, K. Mitoxantrone: an overview of safety and toxicity. Invest New Drugs 1985; 3: 123132.
10. Shann, KG, Giacomuzzi, CR, Harness, L, et al. Complications relating to perfusion and extracorporeal circulation associated with the treatment of patients with congenital cardiac disease: Consensus Definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease. In: 2008 Supplement to Cardiology in the Young: Databases and The Assessment of Complications associated with The Treatment of Patients with Congenital Cardiac Disease, Prepared by: The Multi-Societal Database Committee for Pediatric and Congenital Heart Disease, Jacobs JP (eds). Cardiol Young, 2008; 18 (Suppl 2): 206–214.
11. Cooper, DS, Pretre, R. Clinical management of pediatric ventricular assist devices. Pediatr Crit Care Med 2013; 14: S27S36.
12. Jefferies, JL, Morales, DL. Mechanical circulatory support in children: bridge to transplant versus recovery. Curr Heart Fail Rep 2012; 9: 236243.
13. O’Connor, MJ, Rossano, JW. Ventricular assist devices in children. Curr Opin Cardiol 2014; 29: 113121.
14. Thiagarajan, RR, Almond, CS, Cooper, DS, Morales, DL. Ventricular assist devices for mechanical circulatory support in children. World J Pediatr Congenit Heart Surg 2012; 3: 104109.
15. Wilmot, I, Lorts, A, Morales, D. Pediatric mechanical circulatory support. Korean J Thorac Cardiovasc Surg 2013; 46: 391401.
16. Kurihara, C, Nishimura, T, Nawata, K, et al. Successful bridge to recovery with VAD implantation for anthracycline-induced cardiomyopathy. J Artif Organs 2011; 14: 249252.
17. Schweiger, M, Dave, H, Lemme, F, et al. Acute chemotherapy-induced cardiomyopathy treated with intracorporeal left ventricular assist device in an 8-year-old child. ASAIO J 2013; 59: 520522.
18. Cavigelli-Brunner, A, Schweiger, M, Knirsch, W, et al. VAD as bridge to recovery in anthracycline-induced cardiomyopathy and HHV6 myocarditis. Pediatrics 2014; 134: e894e899.
19. Freilich, M, Stub, D, Esmore, D, et al. Recovery from anthracycline cardiomyopathy after long-term support with a continuous flow left ventricular assist device. J Heart Lung Transplant 2009; 28: 101103.
20. Schranz, D, Akintuerk, H, Voelkel, NF. ‘End-stage’ heart failure therapy: potential lessons from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation. Heart 2017; 103: 262267.
21. Latus, H, Hachmann, P, Gummel, K, et al. Biventricular response to pulmonary artery banding in children with dilated cardiomyopathy. J Heart Lung Transplant 2016; 35: 934938.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed