Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T18:53:49.269Z Has data issue: false hasContentIssue false

How best to assess right ventricular function by echocardiography*

Published online by Cambridge University Press:  16 December 2015

Michael P. DiLorenzo
Affiliation:
Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
Shivani M. Bhatt
Affiliation:
Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
Laura Mercer-Rosa*
Affiliation:
Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
*
Correspondence to: Dr L. Mercer-Rosa, MD, MSCE, Division of Cardiology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, United States of America. Tel: 2674268143; Fax: 2674256108; E-mail: mercerrosal@email.chop.edu

Abstract

Right ventricular function is a crucial determinant of long-term outcomes of children with heart disease. Quantification of right ventricular systolic and diastolic performance by echocardiography is of paramount importance, given the prevalence of children with heart disease, particularly those with involvement of the right heart, such as single or systemic right ventricles, tetralogy of Fallot, and pulmonary arterial hypertension. Identification of poor right ventricular performance can provide an opportunity to intervene. In this review, we will go through the different systolic and diastolic indices, as well as their application in practice. Quantification of right ventricular function is possible and should be routinely performed using a combination of different measures, taking into account each disease state. Quantification is extremely useful for individual patient follow-up. Laboratories should continue to strive to optimise reproducibility through quality improvement and quality assurance efforts in addition to investing in technology and training for new, promising techniques, such as three-dimensional echocardiography.

Type
Original Articles
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Presented at the Children’s Hospital of Philadelphia Cardiology 2015: 18th Annual Update on Pediatric and Congenital Cardiovascular Disease: “Challenges and Dilemmas”, Scottsdale, Arizona, United States of America, Wednesday February 11, 2015 – Sunday, February 15, 2015.

**

Michael P. DiLorenzo and Shivani M. Bhatt are co-first authors because they contributed equally to this manuscript.

References

1.Ho, SY, Nihoyannopoulos, P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006; 92 (Suppl 1): i2i13.CrossRefGoogle ScholarPubMed
2.Haber, I, Metaxas, DN, Geva, T, Axel, L. Three-dimensional systolic kinematics of the right ventricle. Am J Physiol Heart Circ Physiol 2005; 289: H1826H1833.CrossRefGoogle ScholarPubMed
3.Meier, GD, Bove, AA, Santamore, WP, Lynch, PR. Contractile function in canine right ventricle. Am J Physiol 1980; 239: H794H804.Google ScholarPubMed
4.Rushmer, RF, Crystal, DK, Wagner, C. The functional anatomy of ventricular contraction. Circ Res 1953; 1: 162170.CrossRefGoogle ScholarPubMed
5.Okada, DR, Rahmouni, HW, Herrmann, HC, Bavaria, JE, Forfia, PR, Han, Y. Assessment of right ventricular function by transthoracic echocardiography following aortic valve replacement. Echocardiography 2014; 31: 552557.CrossRefGoogle ScholarPubMed
6.Sanchez-Quintana, D, Anderson, RH, Ho, SY. Ventricular myoarchitecture in tetralogy of Fallot. Heart 1996; 76: 280286.CrossRefGoogle ScholarPubMed
7.Pettersen, E, Helle-Valle, T, Edvardsen, T, et al. Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion. J Am Coll Cardiol 2007; 49: 24502456.CrossRefGoogle ScholarPubMed
8.Lopez, L, Colan, SD, Frommelt, PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the pediatric measurements writing group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010; 23: 465495.CrossRefGoogle ScholarPubMed
9.Srinivasan, C, Sachdeva, R, Morrow, WR, Greenberg, SB, Vyas, HV. Limitations of standard echocardiographic methods for quantification of right ventricular size and function in children and young adults. J Ultrasound Med 2011; 30: 487493.CrossRefGoogle ScholarPubMed
10.Puchalski, MD, Williams, RV, Askovich, B, Minich, LL, Mart, C, Tani, LY. Assessment of right ventricular size and function: echo versus magnetic resonance imaging. Congenit Heart Dis 2007; 2: 2731.CrossRefGoogle ScholarPubMed
11.Solomon, SD, Skali, H, Anavekar, NS, et al. Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation 2005; 111: 34113419.CrossRefGoogle ScholarPubMed
12.Mertens, LL, Friedberg, MK. Imaging the right ventricle--current state of the art. Nat Rev Cardiol 2010; 7: 551563.CrossRefGoogle ScholarPubMed
13.Lopez-Candales, A, Dohi, K, Rajagopalan, N, Edelman, K, Gulyasy, B, Bazaz, R. Defining normal variables of right ventricular size and function in pulmonary hypertension: an echocardiographic study. Postgrad Med J 2008; 84: 4045.CrossRefGoogle ScholarPubMed
14.Anavekar, NS, Gerson, D, Skali, H, Kwong, RY, Yucel, EK, Solomon, SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography 2007; 24: 452456.CrossRefGoogle ScholarPubMed
15.Anavekar, NS, Skali, H, Bourgoun, M, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am J Cardiol 2008; 101: 607612.CrossRefGoogle ScholarPubMed
16.Selly, JB, Iriart, X, Roubertie, F, et al. Multivariable assessment of the right ventricle by echocardiography in patients with repaired tetralogy of Fallot undergoing pulmonary valve replacement: a comparative study with magnetic resonance imaging. Arch Cardiovasc Dis 2015; 108: 515.CrossRefGoogle ScholarPubMed
17.Shiran, H, Zamanian, RT, McConnell, MV, et al. Relationship between echocardiographic and magnetic resonance derived measures of right ventricular size and function in patients with pulmonary hypertension. J Am Soc Echocardiogr 2014; 27: 405412.CrossRefGoogle ScholarPubMed
18.Forfia, PR, Fisher, MR, Mathai, SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 2006; 174: 10341041.CrossRefGoogle ScholarPubMed
19.Mercer-Rosa, L, Parnell, A, Forfia, PR, Yang, W, Goldmuntz, E, Kawut, SM. Tricuspid annular plane systolic excursion in the assessment of right ventricular function in children and adolescents after repair of tetralogy of fallot. J Am Soc Echocardiogr 2013; 26: 13221329.CrossRefGoogle ScholarPubMed
20.Jurcut, R, Giusca, S, La Gerche, A, Vasile, S, Ginghina, C, Voigt, J-U. The echocardiographic assessment of the right ventricle: what to do in 2010? Eur J Echocardiogr 2010; 11: 8196.CrossRefGoogle Scholar
21.López-Candales, A, Rajagopalan, N, Saxena, N, Gulyasy, B, Edelman, K, Bazaz, R. Right ventricular systolic function is not the sole determinant of tricuspid annular motion. Am J Cardiol 2006; 98: 973977.CrossRefGoogle Scholar
22.Saxena, N, Rajagopalan, N, Edelman, K, Lopez-Candales, A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography 2006; 23: 750755.CrossRefGoogle ScholarPubMed
23.Kaul, S, Tei, C, Hopkins, JM, Shah, PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 1984; 107: 526531.CrossRefGoogle ScholarPubMed
24.Dini, FL, Conti, U, Fontanive, P, et al. Right ventricular dysfunction is a major predictor of outcome in patients with moderate to severe mitral regurgitation and left ventricular dysfunction. Am Heart J 2007; 154: 172179.CrossRefGoogle Scholar
25.Avitabile, CM, Whitehead, K, Fogel, M, Mercer-Rosa, L. Tricuspid annular plane systolic excursion does not correlate with right ventricular ejection fraction in patients with hypoplastic left heart syndrome after fontan palliation. Pediatr Cardiol 2014; 35: 12531258.CrossRefGoogle Scholar
26.Koestenberger, M, Nagel, B, Avian, A, et al. Systolic right ventricular function in children and young adults with pulmonary artery hypertension secondary to congenital heart disease and tetralogy of Fallot: Tricuspid Annular Plane Systolic Excursion (TAPSE) and magnetic resonance imaging data. Congenit Heart Dis 2012; 7: 250258.CrossRefGoogle Scholar
27.Koestenberger, M, Nagel, B, Ravekes, W, et al. Systolic right ventricular function in pediatric and adolescent patients with tetralogy of Fallot: echocardiography versus magnetic resonance imaging. J Am Soc Echocardiogr 2011; 24: 4552.CrossRefGoogle ScholarPubMed
28.Ghio, S, Klersy, C, Magrini, G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 2010; 140: 272278.CrossRefGoogle ScholarPubMed
29.Sato, T, Tsujino, I, Ohira, H, et al. Validation study on the accuracy of echocardiographic measurements of right ventricular systolic function in pulmonary hypertension. J Am Soc Echocardiogr 2012; 25: 280286.CrossRefGoogle ScholarPubMed
30.Koestenberger, M, Ravekes, W, Everett, AD, et al. Right ventricular function in infants, children and adolescents: reference values of the Tricuspid Annular Plane Systolic Excursion (TAPSE) in 640 healthy patients and calculation of z score values. J Am Soc Echocardiogr 2009; 22: 715719.CrossRefGoogle ScholarPubMed
31.Koestenberger, M, Nagel, B, Ravekes, W, et al. Systolic right ventricular function in preterm and term neonates: reference values of the Tricuspid Annular Plane Systolic Excursion (TAPSE) in 258 Patients and calculation of Z-score values. Neonatology 2011; 100: 8592.CrossRefGoogle ScholarPubMed
32.Pavlicek, M, Wahl, A, Rutz, T, et al. Right ventricular systolic function assessment: rank of echocardiographic methods vs. cardiac magnetic resonance imaging. Eur J Echocardiogr 2011; 12: 871880.CrossRefGoogle ScholarPubMed
33.Koestenberger, M, Nagel, B, Ravekes, W, et al. Reference values of tricuspid annular peak systolic velocity in healthy pediatric patients, calculation of z score, and comparison to tricuspid annular plane systolic excursion. Am J Cardiol 2012; 109: 116121.CrossRefGoogle ScholarPubMed
34.Meluzin, J, Spinarova, L, Bakala, J, et al. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J 2001; 22: 340348.CrossRefGoogle Scholar
35.Harada, K, Toyono, M, Yamamoto, F. Assessment of right ventricular function during exercise with quantitative Doppler tissue imaging in children late after repair of tetralogy of Fallot. J Am Soc Echocardiogr 2004; 17: 863869.CrossRefGoogle ScholarPubMed
36.Koestenberger, M, Ravekes, W. Value of tricuspid annular plane systolic excursion and peak systolic velocity in children with pulmonary hypertension. J Am Soc Echocardiogr 2012; 25: 1357, author reply 1357–1358.CrossRefGoogle ScholarPubMed
37.Sutherland, GR, Di Salvo, G, Claus, P, D’Hooge, J, Bijnens, B. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 2004; 17: 788802.CrossRefGoogle ScholarPubMed
38.Nesbitt, GC, Mankad, S, Oh, JK. Strain imaging in echocardiography: methods and clinical applications. Int J Cardiovasc Imaging 2009; 25 (Suppl 1): 922.CrossRefGoogle ScholarPubMed
39.Weidemann, F, Kowalski, M, D’Hooge, J, Bijnens, B, Sutherland, GR. Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function. Basic Res Cardiol 2001; 96: 595605.CrossRefGoogle ScholarPubMed
40.Weidemann, F, Mertens, L, Gewillig, M, Sutherland, GR. Quantitation of localized abnormal deformation in asymmetric nonobstructive hypertrophic cardiomyopathy: a velocity, strain rate, and strain Doppler myocardial imaging study. Pediatr Cardiol 2001; 22: 534537.CrossRefGoogle ScholarPubMed
41.Weidemann, F, Wacker, C, Rauch, A, et al. Sequential changes of myocardial function during acute myocardial infarction, in the early and chronic phase after coronary intervention described by ultrasonic strain rate imaging. J Am Soc Echocardiogr 2006; 19: 839847.CrossRefGoogle ScholarPubMed
42.Kalam, K, Otahal, P, Marwick, TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014; 100: 16731680.CrossRefGoogle ScholarPubMed
43.Teske, AJ, Cox, MG, De Boeck, BW, Doevendans, PA, Hauer, RN, Cramer, MJ. Echocardiographic tissue deformation imaging quantifies abnormal regional right ventricular function in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Soc Echocardiogr 2009; 22: 920927.CrossRefGoogle ScholarPubMed
44.Leong, DP, Grover, S, Molaee, P, et al. Nonvolumetric echocardiographic indices of right ventricular systolic function: validation with cardiovascular magnetic resonance and relationship with functional capacity. Echocardiography 2012; 29: 455463.CrossRefGoogle ScholarPubMed
45.Park, J-H, Negishi, K, Kwon, DH, Popovic, ZB, Grimm, RA, Marwick, TH. Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: comparison with cardiac magnetic resonance and outcome. J Cardiovasc Ultrasound 2014; 22: 113120.CrossRefGoogle ScholarPubMed
46.Dambrauskaite, V, Delcroix, M, Claus, P, et al. Regional right ventricular dysfunction in chronic pulmonary hypertension. J Am Soc Echocardiogr 2007; 20: 11721180.CrossRefGoogle ScholarPubMed
47.Sachdev, A, Villarraga, HR, Frantz, RP, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 2011; 139: 12991309.CrossRefGoogle ScholarPubMed
48.Vitarelli, A, Mangieri, E, Terzano, C, et al. Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. J Am Heart Assoc 2015; 4: e001584.CrossRefGoogle ScholarPubMed
49.Okumura, K, Humpl, T, Dragulescu, A, Mertens, L, Friedberg, MK. Longitudinal assessment of right ventricular myocardial strain in relation to transplant-free survival in children with idiopathic pulmonary hypertension. J Am Soc Echocardiogr 2014; 27: 13441351.CrossRefGoogle ScholarPubMed
50.Li, Y, Xie, M, Wang, X, Lu, Q, Zhang, L, Ren, P. Impaired right and left ventricular function in asymptomatic children with repaired tetralogy of Fallot by two-dimensional speckle tracking echocardiography study. Echocardiography 2015; 32: 135143.CrossRefGoogle ScholarPubMed
51.Ye, J-J, Shu, Q, Liu, X-W, Gu, W-z, Yu, J, Jiang, G-p. Noninvasive perioperative evaluation of right ventricular function in children with tetralogy of Fallot. Artif Organs 2014; 38: 4147.CrossRefGoogle ScholarPubMed
52.Bernard, Y, Morel, M, Descotes-Genon, V, Jehl, J, Meneveau, N, Schiele, F. Value of speckle tracking for the assessment of right ventricular function in patients operated on for tetralogy of fallot. Comparison with magnetic resonance imaging. Echocardiography 2014; 31: 474482.CrossRefGoogle ScholarPubMed
53.Scherptong, RWC, Mollema, SA, Blom, NA, et al. Right ventricular peak systolic longitudinal strain is a sensitive marker for right ventricular deterioration in adult patients with tetralogy of Fallot. Int J Cardiovasc Imaging 2009; 25: 669676.CrossRefGoogle ScholarPubMed
54.Levy, PT, Sanchez Mejia, AA, Machefsky, A, Fowler, S, Holland, MR, Singh, GK. Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 2014; 27: 549560, e543.CrossRefGoogle ScholarPubMed
55.Cetiner, MA, Sayin, MR, Yildirim, N, et al. Right ventricular isovolumic acceleration in acute pulmonary embolism. Echocardiography 2014; 31: 12531258.CrossRefGoogle ScholarPubMed
56.Selcuk, M, Sayar, N, Demir, S, Rodi Tosua, A, Aslan, V. The value of isovolumic acceleration for the assessment of right ventricular function in acute pulmonary embolism. Revista Portuguesa de Cardiologia 2014; 33: 591596.CrossRefGoogle ScholarPubMed
57.Frigiola, A. Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot. Circulation 2004; 110 (Suppl 1): II-153II-157.CrossRefGoogle ScholarPubMed
58.Vogel, M. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure-volume relations in an animal model. Circulation 2002; 105: 16931699.CrossRefGoogle ScholarPubMed
59.Khoo, NS, Young, A, Occleshaw, C, Cowan, B, Zeng, IS, Gentles, TL. Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2009; 22: 12791288.CrossRefGoogle ScholarPubMed
60.van der Zwaan, HB, Helbing, WA, McGhie, JS, et al. Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2010; 23: 134140.CrossRefGoogle ScholarPubMed
61.Leary, PJ, Kurtz, CE, Hough, CL, Waiss, MP, Ralph, DD, Sheehan, FH. Three-dimensional analysis of right ventricular shape and function in pulmonary hypertension. Pulm Circ 2012; 2: 3440.CrossRefGoogle ScholarPubMed
62.Grewal, J, Majdalany, D, Syed, I, Pellikka, P, Warnes, CA. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2010; 23: 127133.CrossRefGoogle ScholarPubMed
63.Niemann, PS, Pinho, L, Balbach, T, et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 2007; 50: 16681676.CrossRefGoogle ScholarPubMed
64.Shiina, Y, Funabashi, N, Lee, K, et al. Right atrium contractility and right ventricular diastolic function assessed by pulsed tissue Doppler imaging can predict brain natriuretic peptide in adults with acquired pulmonary hypertension. Int J Cardiol 2009; 135: 5359.CrossRefGoogle ScholarPubMed
65.Maskatia, SA, Morris, SA, Spinner, JA, Krishnamurthy, R, Altman, CA. Echocardiographic parameters of right ventricular diastolic function in repaired tetralogy of fallot are associated with important findings on magnetic resonance imaging. Congenit Heart Dis 2015; 10: E113E122.CrossRefGoogle ScholarPubMed
66.Zoghbi, WA, Habib, GB, Quinones, MA. Doppler assessment of right ventricular filling in a normal population. Comparison with left ventricular filling dynamics. Circulation 1990; 82: 13161324.CrossRefGoogle Scholar
67.Caballero, L, Kou, S, Dulgheru, R, et al. Echocardiographic reference ranges for normal cardiac Doppler data: results from the NORRE Study. Eur Heart J Cardiovasc Imaging 2015; 16: 10311041.Google ScholarPubMed