Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-09T12:42:24.345Z Has data issue: false hasContentIssue false

Isolated CHDs and neurodevelopmental follow-up using the Bayley Scales of Infant and Toddler Development and the Ages and Stages Questionnaire at 18 and 36 months

Published online by Cambridge University Press:  11 June 2021

Mette Marie Baunsgaard*
Affiliation:
Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
Tine B. Henriksen
Affiliation:
Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
Charlotte K. Gilberg
Affiliation:
Department of Physio- and Occupational Therapy, Aarhus University Hospital, Aarhus, Denmark
Dorthe B. Wibroe
Affiliation:
Department of Physio- and Occupational Therapy, Aarhus University Hospital, Aarhus, Denmark
Trine Haugsted
Affiliation:
Department of Physio- and Occupational Therapy, Aarhus University Hospital, Aarhus, Denmark
John R. Østergaard
Affiliation:
Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
Vibeke E. Hjortdal
Affiliation:
Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
Mette H. Lauridsen
Affiliation:
Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
*
Author for correspondence: Mette Marie Baunsgaard, MS, Aarhus University & Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, Aarhus N 8200 Denmark. Tel: +45 26989281. E-mail: metbau@rm.dk

Abstract

Objectives:

To compare early neurocognitive development in children born with and without isolated CHD using the Bayley Scales of Infant and Toddler Development (3rd edition) and the Ages and Stages Questionnaire (3rd edition).

Methods:

Recruitment took place before birth. Women expecting fetuses with and without CHD causing disturbances in the flow of oxygenated blood to the fetal brain were included in a prospective cohort study comprising fetal MRI (previously published) and neurodevelopmental follow-up. We now present the 18- and 36-month neurodevelopmental follow-up using the Bayley Scales according to age and the 6-month-above-age Ages and Stages Questionnaire in 15 children with and 27 children without CHD.

Results:

Children with CHD had, compared with the children without CHD, an increased risk of scoring ≤ 100 in the Bayley Scales cognition category at 18 and 36 -months; relative risk 1.7 (95% confidence interval (CI): 1.0–2.8) and 3.1 (CI: 1.2–7.5), respectively. They also achieved lower scores in the 6-month-above-age Ages and Stages Questionnaires (24 and 42 months) communication; mean z-score difference −0.72 (CI: −1.4; −0.1) and −1.06 (CI: −1.8; −0.3) and gross motor; mean z-score difference: −0.87 (CI: −1.7; −0.1) and −1.22 (CI: −2.4; −0.02) categories.

Conclusions:

The children with CHD achieved lower scores in the Bayley Scales cognition category and the Ages and Stages Questionnaire communication and gross motor categories possibly indicative of early neurodevelopmental deficiencies. We recommend early screening and monitoring for neurodevelopmental delays in children with CHD in order to improve further neurodevelopment and educational achievements.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39: 18901900. doi: 10.1016/s0735-1097(02)01886-7.CrossRefGoogle ScholarPubMed
Dolk, H, Loane, M, Garne, E. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 2011; 123: 841849. doi: 10.1161/circulationaha.110.958405.CrossRefGoogle ScholarPubMed
Gilboa, SM, Salemi, JL, Nembhard, WN, Fixler, DE, Correa, A. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation. 2010; 122: 22542263. doi: 10.1161/circulationaha.110.947002.CrossRefGoogle ScholarPubMed
Boneva, RS, Botto, LD, Moore, CA, Yang, Q, Correa, A, Erickson, JD. Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979–1997. Circulation. 2001; 103: 23762381. doi: 10.1161/01.cir.103.19.2376.CrossRefGoogle ScholarPubMed
Oster, ME, Lee, KA, Honein, MA, Riehle-Colarusso, T, Shin, M, Correa, A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics. 2013; 131: e15021508. doi: 10.1542/peds.2012-3435.CrossRefGoogle ScholarPubMed
Bhatt, AB, Foster, E, Kuehl, K, et al. Congenital heart disease in the older adult: a scientific statement from the American Heart Association. Circulation. 2015; 131: 18841931, doi: 10.1161/cir.0000000000000204.CrossRefGoogle ScholarPubMed
Dearani, JA, Connolly, HM, Martinez, R, Fontanet, H, Webb, GD. Caring for adults with congenital cardiac disease: successes and challenges for 2007 and beyond. Cardiol Young. 2007; 17 (Suppl 2): 8796. doi: 10.1017/s1047951107001199.CrossRefGoogle ScholarPubMed
Cassidy, AR, White, MT, DeMaso, DR, Newburger, JW, Bellinger, DC. Executive function in children and adolescents with critical cyanotic congenital heart disease. J Int Neuropsychol Soc. 2015; 21: 3449. doi: 10.1017/s1355617714001027.CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, Rivkin, MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011; 124: 13611369. doi: 10.1161/circulationaha.111.026963.CrossRefGoogle ScholarPubMed
Oberhuber, RD, Huemer, S, Mair, R, Sames-Dolzer, E, Kreuzer, M, Tulzer, G. Cognitive development of school-age hypoplastic left heart syndrome survivors: a single center study. Pediatr Cardiol. 2017; 38: 10891096. doi: 10.1007/s00246-017-1623-8.CrossRefGoogle ScholarPubMed
Calderon, J, Angeard, N, Pinabiaux, C, Bonnet, D, Jambaque, I. Facial expression recognition and emotion understanding in children after neonatal open-heart surgery for transposition of the great arteries. Dev Med Child Neurol. 2014; 56: 564571. doi: 10.1111/dmcn.12381.CrossRefGoogle ScholarPubMed
Ricci, MF, Andersen, JC, Joffe, AR, et al. Chronic neuromotor disability after complex cardiac surgery in early life. Pediatrics. 2015; 136: e922e933. doi: 10.1542/peds.2015-1879.CrossRefGoogle ScholarPubMed
Gerstle, M, Beebe, DW, Drotar, D, Cassedy, A, Marino, BS. Executive functioning and school performance among pediatric survivors of complex congenital heart disease. J Pediatr. 2016; 173: 154159. doi: 10.1016/j.jpeds.2016.01.028.CrossRefGoogle ScholarPubMed
Wernovsky, G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young. 2006; 16 (Suppl 1): 92104. doi: 10.1017/s1047951105002398.CrossRefGoogle Scholar
Udholm, S, Nyboe, C, Dantoft, TM, Jørgensen, T, Rask, CU, Hjortdal, VE. Small atrial septal defects are associated with psychiatric diagnoses, emotional distress, and lower educational levels. Congenital Heart Dis 2019; 14: 803810. doi: 10.1111/chd.12808.CrossRefGoogle ScholarPubMed
Olsen, M, Hjortdal, VE, Mortensen, LH, Christensen, TD, Sørensen, HT, Pedersen, L. Educational achievement among long-term survivors of congenital heart defects: a Danish population-based follow-up study. Cardiol Young. 2011; 21: 197203. doi: 10.1017/s1047951110001769.CrossRefGoogle ScholarPubMed
Nyboe, C, Fonager, K, Larsen, ML, Andreasen, JJ, Lundbye-Christensen, S, Hjortdal, V. Effect of atrial septal defect in adults on work participation (from a nation wide register-based follow-up study regarding work participation and use of permanent social security benefits). Am J Cardiol. 2019; 124: 17751779. doi: 10.1016/j.amjcard.2019.08.041.CrossRefGoogle Scholar
Khalil, A, Suff, N, Thilaganathan, B, Hurrell, A, Cooper, D, Carvalho, JS. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014; 43: 1424. doi: 10.1002/uog.12526.CrossRefGoogle ScholarPubMed
Gaynor, JW, Stopp, C, Wypij, D, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015; 135: 816825. doi: 10.1542/peds.2014-3825.CrossRefGoogle ScholarPubMed
Asschenfeldt, B, Evald, L, Heiberg, J, et al. Neuropsychological status and structural brain imaging in adults with simple congenital heart defects closed in childhood. J Am Heart Assoc. 2020. doi: 10.1161/jaha.120.015843.CrossRefGoogle ScholarPubMed
Peyvandi, S, Chau, V, Guo, T, et al. Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease. J Am Coll Cardiol. 2018; 71: 19861996. doi: 10.1016/j.jacc.2018.02.068.CrossRefGoogle ScholarPubMed
Marino, BS, Lipkin, PH, Newburger, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012; 126: 11431172. doi: 10.1161/CIR.0b013e318265ee8a.CrossRefGoogle ScholarPubMed
Ware, J, Butcher, JL, Latal, B, et al. Neurodevelopmental evaluation strategies for children with congenital heart disease aged birth through 5 years: recommendations from the cardiac neurodevelopmental outcome collaborative. Cardiol Young. 2020; 30: 16091622. doi: 10.1017/S1047951120003534.CrossRefGoogle ScholarPubMed
Bayley, N. Bayley Scales of Infant and Toddler Development Third Edition Administration Manual. NCS Pearson, Inc., San Antonio, TX, 2006.Google Scholar
Squires, J. Ages and Stages Questionnaires Third Edition User’s Guide. Paul H. Brookes Publishing Co., Inc., Baltimore, MD, 2009.CrossRefGoogle Scholar
Plomgaard, AM, Hansen, BM, Greisen, G. Measuring developmental deficit in children born at gestational age less than 26 weeks using a parent-completed developmental questionnaire. Acta Paediatr 2006; 95: 14881494. doi: 10.1080/08035250600684438.CrossRefGoogle ScholarPubMed
Lauridsen, MH, Uldbjerg, N, Henriksen, TB, et al. Cerebral oxygenation measurements by magnetic resonance imaging in fetuses with and without heart defects. Circ Cardiovasc Imaging 2017; 10: e006459. doi: 10.1161/circimaging.117.006459.CrossRefGoogle ScholarPubMed
Skotting, MB, Eskildsen, SF, Ovesen, AS, et al. Infants with congenital heart defects have reduced brain volumes. Sci Rep. 2021; 11: 4191. doi: 10.1038/s41598-021-83690-3.CrossRefGoogle ScholarPubMed
Chau, V, Synnes, A, Grunau, RE, Poskitt, KJ, Brant, R, Miller, SP. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology. 2013; 81: 20822089. doi: 10.1212/01.wnl.0000437298.43688.b9.CrossRefGoogle ScholarPubMed
Acton, BV, Biggs, WSG, Creighton, DE, et al. Overestimating neurodevelopment using the Bayley-III after early complex cardiac surgery. Pediatrics. 2011; 128, e794e800. doi: 10.1542/peds.2011-0331.CrossRefGoogle Scholar
Majnemer, A, Limperopoulos, C, Shevell, M, Rosenblatt, B, Rohlicek, C, Tchervenkov, C. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. J Pediatr. 2006; 148: 7277. doi: 10.1016/j.jpeds.2005.08.036.CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, duPlessis, AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003; 126: 13851396. doi: 10.1016/s0022-5223(03)00711-6.CrossRefGoogle ScholarPubMed
Brosig, CL, Bear, L, Allen, S, et al. Neurodevelopmental outcomes at 2 and 4 years in children with congenital heart disease. Congenital Heart Dis. 2018; 13: 700705. doi: 10.1111/chd.12632.CrossRefGoogle ScholarPubMed
Latal, B. Neurodevelopmental outcomes of the child with congenital heart disease. Clin Perinatol. 2016; 43: 173185. doi: 10.1016/j.clp.2015.11.012.CrossRefGoogle ScholarPubMed
Laraja, K, Sadhwani, A, Tworetzky, W, et al. Neurodevelopmental outcome in children after fetal cardiac intervention for aortic stenosis with evolving hypoplastic left heart syndrome. J Pediatr. 2017; 184: 130136.e134. doi: 10.1016/j.jpeds.2017.01.034.CrossRefGoogle ScholarPubMed
Campbell, MJ, Ziviani, JM, Stocker, CF, Khan, A, Sakzewski, L. Neuromotor performance in infants before and after early open-heart surgery and risk factors for delayed development at 6 months of age. Cardiol Young. 2019; 29: 100109. doi: 10.1017/s1047951118001622.CrossRefGoogle ScholarPubMed
Brandlistuen, RE, Stene-Larsen, K, Holmstrom, H, Landolt, MA, Eskedal, LT, Vollrath, ME. Motor and social development in 6-month-old children with congenital heart defects. J Pediatr. 2010; 156: 265269.e261. doi: 10.1016/j.jpeds.2009.08.035.CrossRefGoogle ScholarPubMed
Skellern, CY, Rogers, Y, O’Callaghan, MJ. A parent-completed developmental questionnaire: follow up of ex-premature infants. J Paediatr Child Health. 2001; 37: 125129. doi: 10.1046/j.1440-1754.2001.00604.x.CrossRefGoogle ScholarPubMed
Klamer, A, Lando, A, Pinborg, A, Greisen, G. Ages and stages questionnaire used to measure cognitive deficit in children born extremely preterm. Acta Paediatr. 2005; 94: 13271329. doi: 10.1111/j.1651-2227.2005.tb02095.x.CrossRefGoogle ScholarPubMed
Lindsay, NM, Healy, GN, Colditz, PB, Lingwood, BE. Use of the ages and stages questionnaire to predict outcome after hypoxic-ischaemic encephalopathy in the neonate. J Paediatr Child Health. 2008; 44: 590595. doi: 10.1111/j.1440-1754.2008.01388.x.CrossRefGoogle ScholarPubMed
Richter, J, Janson, H. A validation study of the Norwegian version of the ages and stages questionnaires. Acta Paediatr. 2007; 96: 748752. doi: 10.1111/j.1651-2227.2007.00246.x.CrossRefGoogle ScholarPubMed
Juneja, M, Mohanty, M, Jain, R, Ramji, S. Ages and stages questionnaire as a screening tool for developmental delay in Indian children. Indian Pediatr. 2012; 49: 457461. doi: 10.1007/s13312-012-0074-9.CrossRefGoogle ScholarPubMed
Elbers, J, Macnab, A, McLeod, E, Gagnon, F. The ages and stages questionnaires: feasibility of use as a screening tool for children in Canada. Can J Rural Med. 2008; 13: 914.Google ScholarPubMed
Noeder, MM, Logan, BA, Struemph, KL, et al. Developmental screening in children with CHD: ages and stages questionnaires. Cardiol Young. 2017; 27: 14471454. doi: 10.1017/s1047951117000415.CrossRefGoogle ScholarPubMed
Schonhaut, L, Armijo, I, Schonstedt, M, Alvarez, J, Cordero, M. Validity of the ages and stages questionnaires in term and preterm infants. Pediatrics. 2013; 131: e14681474. doi: 10.1542/peds.2012-3313.CrossRefGoogle ScholarPubMed
Blasi, V, Pirastru, A, Cabinio, M, et al. Early life adversities and borderline intellectual functioning negatively impact limbic system connectivity in childhood: a connectomics-based study. Front Psychiatry. 2020; 11: 497116. doi: 10.3389/fpsyt.2020.497116.CrossRefGoogle ScholarPubMed
Baglio, G, Blasi, V, Intra, FS, et al. Social competence in children with borderline intellectual functioning: delayed development of theory of mind across all complexity levels. Front Psychol. 2016; 7: 1604. doi: 10.3389/fpsyg.2016.01604.CrossRefGoogle ScholarPubMed
Long, SH, Galea, M, Eldridge, BJ, Harris, SR. Performance of 2-year-old children after early surgery for congenital heart disease on the Bayley Scales of Infant and Toddler development, third edition. Early Hum Dev. 2012; 88: 603607. doi: 10.1016/j.earlhumdev.2012.01.007.CrossRefGoogle ScholarPubMed
Anderson, PJ, De Luca, CR, Hutchinson, E, Roberts, G, Doyle, LW. Underestimation of developmental delay by the new Bayley-III Scale. Arch Pediatr Adolesc Med. 2010; 164: 352356. doi: 10.1001/archpediatrics.2010.20.CrossRefGoogle ScholarPubMed
Goldstone, AB, Baiocchi, M, Wypij, D, et al. The Bayley-III scale may underestimate neurodevelopmental disability after cardiac surgery in infants. Eur J Cardiothorac Surg. 2020; 57: 6371. doi: 10.1093/ejcts/ezz123.CrossRefGoogle ScholarPubMed
Jary, S, Whitelaw, A, Walloe, L, Thoresen, M. Comparison of Bayley-2 and Bayley-3 scores at 18 months in term infants following neonatal encephalopathy and therapeutic hypothermia. Dev Med Child Neurol. 2013; 55: 10531059. doi: 10.1111/dmcn.12208.CrossRefGoogle ScholarPubMed
Lowe, JR, Erickson, SJ, Schrader, R, Duncan, AF. Comparison of the Bayley II mental developmental index and the Bayley III cognitive scale: are we measuring the same thing? Acta Paediatr. 2012; 101: e55e58. doi: 10.1111/j.1651-2227.2011.02517.x.CrossRefGoogle ScholarPubMed
Johnson, S, Moore, T, Marlow, N. Using the Bayley-III to assess neurodevelopmental delay: which cut-off should be used? Pediatr Res. 2014; 75: 670674. doi: 10.1038/pr.2014.10.CrossRefGoogle ScholarPubMed
Hiraiwa, A, Ibuki, K, Tanaka, T, et al. Toddler neurodevelopmental outcomes are associated with school-age IQ in children with single ventricle physiology. Semin Thorac Cardiovasc Surg. 2019. doi: 10.1053/j.semtcvs.2019.10.017.Google ScholarPubMed
Supplementary material: File

Baunsgaard et al. supplementary material

Table S1

Download Baunsgaard et al. supplementary material(File)
File 16 KB