Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-07T01:07:33.648Z Has data issue: false hasContentIssue false

Pulmonary valve replacement in tetralogy of Fallot – who and how?

Published online by Cambridge University Press:  03 November 2023

Catarina M. Costa*
Affiliation:
Department of Cardiology, Centro Hospitalar Universitário de São João, Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal
Cristina Cruz
Affiliation:
Department of Cardiology, Centro Hospitalar Universitário de São João, Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal
Teresa Pinho
Affiliation:
Department of Cardiology, Centro Hospitalar Universitário de São João, Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal
Sofia Torres
Affiliation:
Department of Cardiology, Centro Hospitalar Universitário de São João, Porto, Portugal
João C. Silva
Affiliation:
Department of Cardiology, Centro Hospitalar Universitário de São João, Porto, Portugal
José A. Madureira
Affiliation:
Department of Radiology, Centro Hospitalar Universitário de São João, Porto, Portugal
Elson Salgueiro
Affiliation:
Cardiothoracic Surgery, Centro Hospitalar Universitário de São João, Porto, Portugal
Jorge Casanova
Affiliation:
Cardiothoracic Surgery, Centro Hospitalar Universitário de São João, Porto, Portugal
Paulo Pinho
Affiliation:
Cardiothoracic Surgery, Centro Hospitalar Universitário de São João, Porto, Portugal
Filipe Macedo
Affiliation:
Department of Cardiology, Centro Hospitalar Universitário de São João, Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal
*
Corresponding author: C. M. Costa; Email: catarinamarcosta@gmail.com

Abstract

Background and Aim:

Pulmonary regurgitation is the most common complication in repaired tetralogy of Fallot patients. Severe chronic pulmonary regurgitation can be tolerated for decades, but if not treated, it can progress to symptomatic, irreversible right ventricular dilatation and dysfunction. We investigated clinical associations with pulmonary valve replacement among patients with significative pulmonary regurgitation and how interventional developments can change their management.

Methods:

All adult patients with repaired tetralogy of Fallot who were followed at an adult CHD Clinic at a single centre from 1980 to 2022 were included on their first outpatient visit. Follow-up was estimated from the time of correction surgery until one of the following events occurred first: pulmonary valve replacement, death, loss to follow-up or conclusion of the study.

Results:

We included 221 patients (116 males) with a median age of 19 (18–25). At a median age of 33 (10) years old, 114 (51%) patients presented significant pulmonary regurgitation. Among patients with significant pulmonary regurgitation, pulmonary valve replacement was associated with male gender, older age at surgical repair, and longer QRS duration in adulthood. Pulmonary valve replacement was performed in 50 patients, including four transcatheter pulmonary valve implantations, at a median age of 34 (14) years.

Conclusion:

Pulmonary regurgitation affects a large percentage of tetralogy of Fallot adult patients, requiring a long-term clinical and imaging follow-up. Sex, age at surgical repair and longer QRS are associated with the need of PVR among patients with significative pulmonary regurgitation. Clinical practice and current literature support TPVI as the future gold standard intervention.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Catarina Costa and Cristina Cruz are first authors.

References

Bouzas, B, Kilner, PJ, Gatzoulis, MA. Pulmonary regurgitation: not a benign lesion. Eur Heart J 2005; 26: 433439.10.1093/eurheartj/ehi091CrossRefGoogle Scholar
Blais, S, Marelli, A, Vanasse, A, et al. The TRIVIA cohort for surgical management of tetralogy of Fallot: merging population and clinical data for real-world scientific evidence. CJC Open 2020; 2: 663670.10.1016/j.cjco.2020.06.012CrossRefGoogle ScholarPubMed
Woo, JP, McElhinney, DB, Lui, GK. The challenges of an aging tetralogy of Fallot population. Expert Rev Cardiovasc Ther 2021; 19: 581593.10.1080/14779072.2021.1940960CrossRefGoogle ScholarPubMed
Geva, T. Indications for pulmonary valve replacement in repaired tetralogy of fallot: the quest continues. Circulation 2013; 128: 18551857.10.1161/CIRCULATIONAHA.113.005878CrossRefGoogle ScholarPubMed
Rajpopat, AD, Schmidt, MR, Sondergaard, L. Time to reconsider when to re-valve for free pulmonary regurgitation in tetralogy of Fallot? EuroIntervention 2019; 14: 13441346.10.4244/EIJV14I13A242CrossRefGoogle ScholarPubMed
Baumgartner, H, De Backer, J, Babu-Narayan, SV, et al. ESC guidelines for the management of adult congenital heart disease. Eur Heart J 2020; 42: 563645, 2021.CrossRefGoogle Scholar
Blais, S, Marelli, A, Vanasse, A, et al. Comparison of long-term outcomes of valve-sparing and transannular patch procedures for correction of tetralogy of Fallot. JAMA Netw Open 2021; 4: e2118141.10.1001/jamanetworkopen.2021.18141CrossRefGoogle ScholarPubMed
Geva, T, Mulder, B, Gauvreau, K, et al. Preoperative predictors of death and sustained ventricular tachycardia after pulmonary valve replacement in patients with repaired tetralogy of Fallot enrolled in the INDICATOR Cohort. Circulation 2018; 138: 21062115.CrossRefGoogle ScholarPubMed
Meca Aguirrezabalaga, JA, Silva Guisasola, J, Diaz Mendez, R, Escalera Veizaga, AE, Hernandez-Vaquero Panizo, D. Pulmonary regurgitation after repaired tetralogy of Fallot: surgical versus percutaneous treatment. Ann Transl Med 2020; 8: 967.10.21037/atm.2020.03.81CrossRefGoogle ScholarPubMed
Therrien, J, Provost, Y, Merchant, N, Williams, W, Colman, J, Webb, G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol 2005; 95: 779782.CrossRefGoogle ScholarPubMed
Shuter, B, Aslani, A. Body surface area: Du Bois and Du Bois revisited. Eur J Appl Physiol 2000; 82: 250254.10.1007/s004210050679CrossRefGoogle Scholar
Gatzoulis, MA, Till, JA, Somerville, J, Redington, AN. Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation 1995; 92: 231237.CrossRefGoogle ScholarPubMed
Gatzoulis, MA, Balaji, S, Webber, SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet 2000; 356: 975981.10.1016/S0140-6736(00)02714-8CrossRefGoogle ScholarPubMed
Tannous, P, Nugent, A. Transcatheter pulmonary valve replacement in native and nonconduit right ventricle outflow tracts. J Thorac Cardiovasc Surg 2021; 162: 967970.10.1016/j.jtcvs.2020.07.126CrossRefGoogle ScholarPubMed
Mosca, RS. Pulmonary valve replacement after repair of tetralogy of Fallot: evolving strategies. J Thorac Cardiovasc Surg 2016; 151: 623625.10.1016/j.jtcvs.2015.09.008CrossRefGoogle ScholarPubMed