Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T03:55:21.957Z Has data issue: false hasContentIssue false

Risk factors characterisation for CHD: a case–control study in Bogota and Cali, Colombia, 2002–2020

Published online by Cambridge University Press:  15 June 2023

Esteban Portilla R.*
Affiliation:
Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
Vyara Harizanov
Affiliation:
Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
Karen Sarmiento
Affiliation:
Department of Physiological Sciences, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
Jorge Holguín
Affiliation:
Secretary of Public Health, Cali, Colombia
Gloria Gracia
Affiliation:
Secretary of Health, Bogotá, Colombia
Paula Hurtado-Villa
Affiliation:
Department of Basic Sciences, Faculty of Health, Pontificia Universidad Javeriana, Cali, Colombia
Ignacio Zarante
Affiliation:
Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
*
Corresponding author: Esteban Portilla R.; Email: eportilla@javeriana.edu.co

Abstract

Objective:

CHDs correspond to 28% of all congenital anomalies, being the leading cause of infant mortality in the first year of life. Thus, it is essential to explore risk factors for CHDs presentation, allowing the detection of probable cases within a population.

Methods:

We identified newborns with CHDs within a cohort from the Program for the Prevention and Monitoring of Congenital Defects in Bogota and Cali, 2002–2020. Cases were classified as isolated, complex isolated, polymalformed, and syndromic. Variables were analysed by comparing case and control averages with Student’s t test using a 95% confidence level.

Results:

Prevalence obtained was 19.36 per 10 000 live births; non-specified CHD, ventricular septal defect, and atrial septal defect were the most prevalent. As risk factors were found: paternal and maternal age above 45 years, pregestational diabetes, mother’s body mass index above 25, low educational level, and socio-economic status. As protective factors: folic acid consumption within the first trimester and pregestational period.

Conclusion:

Different risk and protective factors associated with the presentation of CHDs have been described. We consider that public health strategies should be aimed to reduce risk factors exposure. Also, improving diagnosis and prognosis by having a close monitoring on high-risk patients.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, Y, Chen, S, Zühlke, L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 2019; 48: 455463.CrossRefGoogle ScholarPubMed
Dolk, H, Loane, M, Garne, E. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 2011; 123: 841849.CrossRefGoogle ScholarPubMed
Miranovic, V. The incidence of congenital heart disease: Previous findings and perspectives. Srp Arh Celok Lek 2014; 142: 243248.CrossRefGoogle Scholar
Orioli, IM, Dolk, H, Lopez Camelo, J, et al. The latin American network for congenital malformation surveillance: ReLAMC. Am J Med Genet C Semin Med Genet 2020; 184: 10781091.CrossRefGoogle Scholar
Castaño, SP. Informe de Evento: Defectos Congénitos PE XII 2020. Instituto Nacional de Salud, República de Colombia, 2020.Google Scholar
Marelli, AJ, Mackie, AS, Ionescu-Ittu, R, Rahme, E, Pilote, L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 2007; 115: 163172.CrossRefGoogle ScholarPubMed
Roncancio, CP, Misnaza, SP, Peña, IC, et al. Trends and characteristics of fetal and neonatal mortality due to congenital anomalies, Colombia 1999-2008. J Matern Fetal Neonatal Med 2018; 31: 17481755.CrossRefGoogle ScholarPubMed
Tassinari, S, Martínez-Vernaza, S, Erazo-Morera, N, et al. Epidemiology of congenital heart diseases in Bogotá, Colombia, from 2001 to 2014: Improved surveillance or increased prevalence? Biomédica 2017; 38: 141148.CrossRefGoogle Scholar
Kinsner-Ovaskainen, A, Morris, J, Garne, E, Loane, M, Lanzoni, M. JRC-EUROCAT Report on Statistical Monitoring of Congenital Anomalies (2008 - 2017). Publ Off Eur Union, Luxembourg, 2020.Google Scholar
Jenkins, KJ, Correa, A, Feinstein, JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American heart association council on cardiovascular disease in the young: endorsed by the American academy of pediatrics. Circulation 2007; 115: 29953014.10.1161/CIRCULATIONAHA.106.183216CrossRefGoogle Scholar
Persson, M, Razaz, N, Edstedt Bonamy, AK, Villamor, E, Cnattingius, S. Maternal overweight and obesity and risk of congenital heart defects. J Am Coll Cardiol 2019; 73: 4453.CrossRefGoogle ScholarPubMed
Wu, Y, Liu, B, Sun, Y, et al. Association of maternal prepregnancy diabetes and gestational diabetes mellitus with congenital Anomalies of the newborn. Diabetes Care 2020; 43: 29832990.CrossRefGoogle ScholarPubMed
Poletta, FA, Gili, JA, Castilla, EE. Latin American collaborative study of congenital malformations (ECLAMC): a model for health collaborative studies. Public Health Genom 2014; 17: 6167.CrossRefGoogle Scholar
Eckersley, L, Sadler, L, Parry, E, Finucane, K, Gentles, TL. Timing of diagnosis affects mortality in critical congenital heart disease. Arch Dis Child 2016; 101: 516520.CrossRefGoogle ScholarPubMed
Persson, M, Cnattingius, S, Villamor, E, et al. Risk of major congenital malformations in relation to maternal overweight and obesity severity: cohort study of 1.2 million singletons. BMJ 2017; 357: 18.Google ScholarPubMed
Miller, A, Riehle-Colarusso, T, Siffel, C, Frías, JL, Correa, A. Maternal age and prevalence of isolated congenital heart defects in an urban area of the United States. Am J Med Genet A 2011; 155: 21372145.CrossRefGoogle Scholar
Best, KE, Rankin, J. Is advanced maternal age a risk factor for congenital heart disease? Birt Defects Res A Clin Mol Teratol 2016; 106: 461467.10.1002/bdra.23507CrossRefGoogle ScholarPubMed
Øyen, N, Diaz, LJ, Leirgul, E, et al. Prepregnancy diabetes and offspring risk of congenital heart disease: a nationwide cohort study. Circulation 2016; 133: 22432253.CrossRefGoogle ScholarPubMed
Dolk, H, McCullough, N, Callaghan, S, et al. Risk factors for congenital heart disease: The Baby Hearts Study, a population-based case-control study. In: Beyerlein, A (ed). PLOS ONE. vol. 15, 2020: 120.Google Scholar
Bruckner, TA, Singh, P, Lelong, N, Khoshnood, B. Down syndrome among primiparae at older maternal age: a test of the relaxed filter hypothesis. Birth Defects Res 2019; 111: 16111617.CrossRefGoogle ScholarPubMed
Acevedo, L, Valle, EM. Departamento Administrativo Nacional de Estadísticas, Dirección de Censos y Demografía. Estadísticas vitales - EEVV cifras definitivas 2017. DANE, República de Colombia, 2018.Google Scholar
Joinau-Zoulovits, F, Bertille, N, Cohen, JF, Khoshnood, B. Association between advanced paternal age and congenital heart defects: a systematic review and meta-analysis. Hum Reprod 2020; 35: 116.Google ScholarPubMed
Steurer, MA, Baer, RJ, Keller, RL, et al. Gestational age and outcomes in critical congenital heart disease. Pediatrics 2017 Oct; 1: 111.Google Scholar
Chu, PY, Li, JS, Kosinski, AS, Hornik, CP, Hill, KD. Congenital heart disease in premature infants 25-32 weeks’ gestational age. J Pediatr 2017; 181: 3741.CrossRefGoogle ScholarPubMed
Cnota, JF, Gupta, R, Michelfelder, EC, Ittenbach, RF. Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks. J Pediatr 2011; 159: 761765.CrossRefGoogle ScholarPubMed
Aubry, P, Demian, H. Différences entre les sexes dans les cardiopathies congénitales. Ann Cardiol Angéiologie 2016; 65: 440445.CrossRefGoogle Scholar
Yuan, X, Liu, Z, Zhu, J, et al. Association between prepregnancy body mass index and risk of congenital heart defects in offspring: an ambispective observational study in China. BMC Pregnancy Childbirth 2020; 20: 444452.CrossRefGoogle ScholarPubMed
Liu, X, Ding, G, Yang, W, et al. Maternal body mass index and risk of congenital heart defects in infants: a dose-response meta-analysis. BioMed Res Int 2019; 2019: 114.Google ScholarPubMed
Chen, L, Yang, T, Chen, L, et al. Risk of congenital heart defects in offspring exposed to maternal diabetes mellitus: an updated systematic review and meta-analysis. Arch Gynecol Obstet 2019; 300: 14911506.CrossRefGoogle ScholarPubMed
Engineer, Saiyin, Greco, Feng. Say NO to ROS: their roles in embryonic heart development and pathogenesis of congenital heart defects in maternal diabetes. Antioxidants 2019; 8: 436462.CrossRefGoogle ScholarPubMed
Feng, Y, Wang, S, Chen, R, et al. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies. Sci Rep 2015; 5: 85068514.CrossRefGoogle ScholarPubMed
Hernández-Díaz, S, Mitchell, AA. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 2000; 343: 16081614.CrossRefGoogle ScholarPubMed
Ministerio de Salud y Protección Social, República de Colombia. Resolución 3280 de 2018. MinSalud, Colombia, 2018.Google Scholar
Czeizel, A, Dudás, I, Vereczkey, A, Bánhidy, F. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients 2013; 5: 47604775.CrossRefGoogle ScholarPubMed
Prada, E, Singh, S, Remez, L, Villarreal, C. Embarazo no deseado y aborto inducido en Colombia: causas y consecuencias. Guttmacher Institute, Nueva York, 2011, 140.Google Scholar
Rozo, C. Análisis de Situación de País para la Fortificación del Arroz: Colombia. Bogotá DC, Colombia, 2016, 145.Google Scholar
Yu, D, Feng, Y, Yang, L, et al. Maternal Socioeconomic Status and the Risk of Congenital Heart Defects in Offspring: A Meta-Analysis of 33 Studies. PLOS ONE. vol. 9, 2014: 19.Google ScholarPubMed
Peyvandi, S, Baer, RJ, Chambers, CD, et al. Environmental and socioeconomic factors influence the live-born incidence of congenital heart disease: a population-based study in California. J Am Heart Assoc 2020; 9: 111.CrossRefGoogle ScholarPubMed
Adegbosin, AE, Zhou, H, Wang, S, Stantic, B, Sun, J. Systematic review and meta-analysis of the association between dimensions of inequality and a selection of indicators of reproductive, maternal, newborn and child health (RMNCH). J Glob Health 2019; 9: 113.CrossRefGoogle Scholar
Bronberg, R, Groisman, B, Bidondo, MP, Barbero, P, Liascovich, R. Birth prevalence of congenital anomalies in the city of Buenos Aires, Argentina, according to socioeconomic level. J Community Genet 2020; 11: 303311.CrossRefGoogle Scholar
García, MA, Imbachí, L, Hurtado, PM, Gracia, G, Zarante, I. Detección ecográfica de anomalías congénitas en 76.155 nacimientos en las ciudades de Bogotá y cali, en el periodo 2011-2012. Biomédica 2014; 34: 379386. CrossRefGoogle Scholar