Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T00:23:38.859Z Has data issue: false hasContentIssue false

Far infrared study of K+ , Rb+ and Cs+ during their exchange with Na+ and Ca2+ in vermiculite

Published online by Cambridge University Press:  09 July 2018

R. Badreddine
Affiliation:
Unité de Science du sol, INRA, Route de Saint Cyr, 78026 Versailles
R. Le Dred
Affiliation:
Laboratoire des Matériaux Minéraux, ENSCM, 3, rue Alfred Werner, 68093 Mulhouse, France
R. Prost*
Affiliation:
Unité de Science du sol, INRA, Route de Saint Cyr, 78026 Versailles

Abstract

All the exchange isotherms of Na+ or Ca2+ in vermiculite for K+, Rb+ or Cs+ show two kinds of exchanges sites: the first corresponds to sites located in phlogopite-like interlamellar spaces and the second to sites located in smectite-like interlamellar spaces. During the exchange, three mineralogical phases are formed: Na- or Ca-vermiculite; K-, Rb- or Cs-vermiculite and a mixed-layer phase. Far infrared absorption bands of K+, Rb+ and Cs+ located in the phlogopite-like interlamellar spaces are at 72, 59 and 53 cm–1, respectively. These frequencies are characteristic of a trioctahedral mixed-layer phase. Selectivity is greater for cations with a low hydration energy (K+, Rb+, Cs+) than for cations with a high hydration energy (Na+, Ca2+). On the other hand, for cations with a low hydration energy, structural parameters such as the tetrahedral rotation angle, α, have to be taken into account.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badreddine, R., Grandjean, F., Vandormael, D., Fransolet, A.-M. & Long, G.J. (2000) An 57Fe Mössbauer spectral study of vermiculitization in the Palabora Complex, Republic of South Africa. Clay Minerals, 35, 653663.CrossRefGoogle Scholar
Badreddine, R., Le Dred, R. & Prost, R. (2002) Far infrared study of K+ during K+⇌Ca2+ exchange in vermiculite. Clay Minerals, 37, 5970.CrossRefGoogle Scholar
Baron, J. & Saehr, D. (1983) Contribution à l’étude thermodynamique de l’échange de cations entre une vermiculite et des solutions aqueuses d’ions minéraux et organiques. PhD thesis, Univ. Haute-Alsace, France.Google Scholar
Coleman, N.T., Graig, D. & Lewis, R.J. (1963) Ion exchange reactions of cesium. Soil Science Society of America Proceedings, 27, 287289.CrossRefGoogle Scholar
Diaz, M. (1999) E´ tude des interactions cations compensateurs/ feuillets dans les argiles: contribution à la connaissance des mécanismes de rétention sélective. PhD thesis, Univ. Orléans, France.Google Scholar
Farmer, V.C. & Wilson, M.J. (1970) Experimental conversion of biotite to hydrobiotite. Nature, 226, 841842.CrossRefGoogle ScholarPubMed
Kittrick, J.A. (1966) Forces involved in ion fixation by vermiculit e. Soil Science Society of America Proceedings, 30, 801803.CrossRefGoogle Scholar
Le Dred, R. & Wey, R. (1978) Formation et applications de complexes mica-vermiculite-chlorure de sodium. Clay Minerals Bulletin, 13, 177186.CrossRefGoogle Scholar
Leonard, R.A. & Weed, S.B. (1970) Effects of potassium removal on the b-dimension of phlogopite. Clays and Clay Minerals, 18, 197202.CrossRefGoogle Scholar
McCauley, J.M. & Newnham, R.E. (1971) Origin and prediction of ditrigonal distortions in micas. American Mineralogist, 56, 16261638.Google Scholar
Mering, J. & Glaeser, R. (1954) Sur le rôle de la valence des cations échangeables dans la montmorillonite. Bulletin de la Societé Française de Minéralogie et Cristallographie, LXXVII, 519530.CrossRefGoogle Scholar
Norrish, K. (1954) The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120134.CrossRefGoogle Scholar
Radoslovich, E.W. & Norrish, K. (1962) The cell dimensions and symmetry of layer lattice silicates. I. Some structural consider ations. American Mineralogists, 47, 599616.Google Scholar
Ross, G.I. & Rich, C.I. (1973) Changes in b-dimension in relation to potassium exchange and to oxidation of phlogopite and biotite. Clays and Clay Minerals, 21,201204.CrossRefGoogle Scholar
Sawhney, B.L. (1964) Sorption and fixation of microquantities of Cs by clay minerals: effect of saturating cations. Soi l Science Society of America Proceedings, 28, 183186.CrossRefGoogle Scholar
Sawhney, B.L. (1967) Interstratification in vermiculite. Clays and Clay Minerals, 15, 7584.CrossRefGoogle Scholar
Sawhney, B.L. (1969) Regularity of interstratification as affected by charge density in layer silicates. Soil Science Society of America Proceedings, 33, 4246.CrossRefGoogle Scholar
Sawhney, B.L. (1972) Selective sorption and fixation of cation by clay minerals: a review. Clays and Clay Minerals, 20, 93100.CrossRefGoogle Scholar
Shainberg, I. & Kemper, W.D. (1966) Hydration status of adsorbed cations. Soil Science Society of America Proceedings, 30, 707713.CrossRefGoogle Scholar
Wey, R., Saehr, D. & Le Dred, R. (1974) Obtention d’un minéral interstratifié régulier à partir d’une vermiculite- K. Comptes Rendus de l ‘Academie Scientifique, Paris, 278, 23932395.Google Scholar