Skip to main content
×
×
Home

Clay minerals for nanocomposites and biotechnology: surface modification, dynamics and responses to stimuli

  • H. Heinz (a1)
Abstract

Clay minerals find a wide range of application in composites, paints, drilling liquids, cosmetics, and medicine. This article reviews chemical and physical properties of natural and organically modified clay minerals to understand the nanometre-scale structure, surface characteristics, and application in functional materials. The relation between fundamental properties and materials design is emphasized and illustrated by examples. The discussion comprises the following: an overview; surface structure and cation density; solubility and solubility reversal by surface modification; the degree of covalent and ionic bonding represented by atomic charges; the distribution of metal substitution sites; measurements and simulations of interfacial properties at the nanometre scale; self-assembly, packing density, and orientation of alkylammonium surfactants on the clay mineral surface; the density and chain conformation of surfactants in organic interlayer spaces; the free energy of exfoliation in polymer matrices and modifications by tuning the cleavage energy; thermal transitions, diffusion, and optical responses of surfactants on the mineral surface; elastic moduli and bending stability of clay layers; and the adsorption mechanism of peptides onto clay mineral surfaces in aqueous solution. Potential applications in biotechnology and other future uses are described.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Clay minerals for nanocomposites and biotechnology: surface modification, dynamics and responses to stimuli
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Clay minerals for nanocomposites and biotechnology: surface modification, dynamics and responses to stimuli
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Clay minerals for nanocomposites and biotechnology: surface modification, dynamics and responses to stimuli
      Available formats
      ×
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Footnotes
Hide All

Presented at the Euroclay 2011 Conference at Antalya, Turkey

Footnotes
References
Hide All
Adams, A. W. & Gast, A. P. (1997) Physical Chemistry of Surfaces, 6th edition. Wiley, New York.
Aguzzi, C., Cerezo, P., Viseras, C. & Caramella, C. (2007) Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 36, 22–36.
Bailey, S.W. (1988) Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, 13. Mineralogical Society of America, Washington D.C.
Belokoneva, E.L., Gubina, Yu.K., Forsyth, J. B. & Brown, P. J. (2002) The charge-density distribution, its multipole refinement and the antiferromagnetic structure of dioptase, Cu6[Si6O18]·6H2O. Physics and Chemistry of Minerals, 29, 430–438.
Berend, I., Cases, J.M., Francois, M., Uriot, J.P., Michot, L., Masion, A. & Thomas, F. (1996) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms. Clays and Clay Minerals, 43, 324–336.
Bergaya, F. & Lagaly, G. (2001) Surface modification of clay minerals. Applied Clay Science, 19, 1–3.
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science. Elsevier, Amsterdam.
Brandrup, J., Immergut, E. H. & Grulke, E. A., editors (1999) Polymer Handbook. Wiley, New York.
Breen, C., Watson, R., Madejova, J., Komadel, P. & Klapyta, Z. (1997) Acid-activated organoclays: Preparation, characterization and catalytic activity of acid-treated tetraalkylammonium-exchanged smectites. Langmuir, 13, 6473–6479.
Brovelli, D., Caseri, W. R. & Hahner, G. (1999) Selfassembled monolayers of alkylammonium ions on mica: Direct determination of the orientation of the alkyl chains. Journal of Colloid and Interface Science, 216, 418–423.
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals. Mineralogical Society, London.
Cases, J.M., Berend, I., Besson, G., Francois, M., Uriot, J.P., Thomas, F. & Poirier, J. E. (1992a) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form. Langmuir, 8, 2730–2739.
Cases, J.M., Pons, C.H., Berend, I., Francois, M., Min, J.H., Tchoubar, D., Besson, G., Thomas, F. & Bottero J. Y. (1992b) Fluid-swelling clays interaction. Proceedings of the 6th IFP Exploration and Production Research Conference, Institut Français du Pétrole, 27–32.
Cases, J.M., Berend, I., Francois, M., Uriot, J.P., Michot, L. J. & Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 8–22.
Catti, M., Ferraris, G., Hull, S. & Pavese, A. (1994) Powder neutron diffraction study of 2M1 muscovite at room pressure and at 2 GPa. European Journal of Mineralogy, 6, 171–178.
Chassin, P., Jounay, C. & Quiquampoix, H. (1986) Measurement of the surface free energy of calciummontmorillonite. Clay Minerals, 21, 899–907.
Christenson, H.K. (1993) Adhesion and surface energy of mica in air and water. The Journal of Physical Chemistry, 97, 12034–12041.
Cygan, R.T., Liang, J. J. & Kalinichev, A. G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108, 1255–1266.
Cygan, R.T., Greathouse, J.A., Heinz, H. & Kalinichev, A. G. (2009) Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19, 2470–2481.
Drummy, L.F., Koerner, H., Phillips, D.M., McAuliffe, J.C., Kumar, M., Farmer, B.L., Vaia, R. A. & Naik, R. R. (2009) Repeat sequence proteins as matrices for nanocomposites. Materials Science Engineering C, 29, 1266–1272.
Drummy, L.F., Jones, S.E., Pandey, R.B., Farmer, B.L., Vaia, R. A. & Naik, R. R. (2010) Bioassembled layered silicate-metal nanoparticle hybrids. ACS Appied. Materials & Interfaces, 2, 1492–1498.
Fermeglia, M. & Pricl, S. (2007) Multiscale modeling for polymer systems of industrial interest. Progress in Organic Coatings, 58, 187–199.
Fu, Y. T. & Heinz, H. (2010a) Cleavage energy of alkylammonium-modified montmorillonite and the relation to exfoliation in nanocomposites: Influence of cation density, head group structure, and chain length. Chemistry of Materials, 22, 1595–1605.
Fu, Y. T. & Heinz, H. (2010b) Structure and cleavage energy of surfactant-modified clay minerals: Influence of CEC, head group, and chain length. Philosophical Magazine, 90, 2415–2424.
Fu, Y.T., Zartman, G.D., Yoonessi, M., Drummy, L. F. & Heinz, H. (2011) Bending of layered silicates on the nanometer scale: mechanism, stored energy, and curvature limits. The Journal of Physical Chemistry C, 115, 22292–22300.
Jr.Gaines, G.L., (1957) The ion-exchange properties of muscovite mica. The Journal of Physical Chemistry, 61, 1408–1413.
Giese, R. F. & van Oss, C.J. (2002) Colloid and Surface Properties of Clays and Related Minerals. Dekker, New York.
Giese, R.F., Constanzo, P. M. & van Oss, C.J. (1991) The surface free energies of talc and pyrophyllite. Physics and Chemistry of Minerals, 17, 611–616.
Greathouse, J.A., Refson, K. & Sposito, G. (2000) Molecular dynamics simulation of water mobility in magnesium-smectite hydrates. Journal of the American Chemical Society, 122, 11459–11464.
Greenwell, H.C., Harvey, M.J., Boulet, P., Bowden, A.A., Coveney, P. V. & Whiting, A. (2005) Interlayer structure and bonding in nonswelling primary amine intercalated clays. Macromolecules, 38, 6189–6200.
Habelitz, S., Carl, G., Rüssel, C., Theil, S., Gerth, U., Schnapp J. D., Jordanov, A. & Knake, H. (1997) Mechanical properties of oriented mica glass ceramic. Journal of Non-Crystalline Solids, 220, 291–298.
Hackett, E., Manias, E. & Giannelis, E. P. (1998) Molecular dynamics simulations of organically modified layered silicates. Journal of Chemical Physics, 108, 7410–7415.
Hayes, W. A. & Schwartz, D. K. (1998) Two-stage growth of octadecyltrimethyl-ammonium bromide monolayers at mica from aqueous solution below the Krafft point. Langmuir, 14, 5913–5917.
He, H.P., Galy, J. & Gerard, J. F. (2005) Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA+/montmorillonite hybrids. Journal of Physical Chemistry B, 109, 13301–13306.
Heinz, H. (2010) Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces. Journal of Computational Chemistry, 31, 1564–1568.
Heinz, H. & Suter, U. W. (2004a) Surface structure of organoclays. Angewandte Chemie, 43, 2239–2243. Heinz, H. & Suter, U. W. (2004b) Atomic charges for classical simulations of polar systems. The Journal of Phyical. Chemistry B, 108, 18341–18352.
Heinz, H., Castelijns, H. J. & Suter, U. W. (2003) Structure and phase transitions of alkyl chains on mica. Journal of the American Chemical Society, 125, 9500–9510.
Heinz, H., Paul, W., Binder, K. & Suter, U.W. (2004) Analysis of the phase transitions in alkyl-mica by density and pressure profiles. Journal of Chemical Physics, 120, 3847–3854.
Heinz, H., Koerner, H., Anderson, K.L., Vaia, R. A. & Farmer, B. L. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.
Heinz, H., Vaia, R. A. & Farmer, B. L. (2006) Interaction energy and surface reconstruction between sheets of layered silicates. Journal of Chemical Physics, 124, 224713.
Heinz, H., Vaia, R.A., Krishnamoorti, R. & Farmer, B. L. (2007) Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, headgroup structure, and cation exchange capacity. Chemistry of Materials, 19, 59–68.
Heinz, H., Vaia, R. A. & Farmer, B. L. (2008a) Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces. Langmuir, 24, 3727–3733.
Heinz, H., Vaia, R.A., Koerner, H. & Farmer, B. L. (2008b) Photoisomerization of azobenzene grafted to montmorillonite: Simulation and experimental challenges. Chemistry of Materials, 20, 6444–6456.
Herrero, C. P. & Sanz, J. (1991) Short-range order of the Si,Al distribution in layer silicates. Journal of Physics and Chemistry of Solids, 52, 1129–1135.
Hill, R.J. (1979) Crystal structure refinement and electron density distribution in diaspora. Physics and Chemistry of Minerals, 5, 179–200.
Iyi, N., Fujita, T., Yelamaggad, C. V. & Lopez Arbeloa, F. (2001) Intercalation of cationic azobenzene derivatives in a synthetic mica and their photoresponse. Applied Clay Science, 19, 47–58.
Jacobs, J.D., Koerner, H., Heinz, H., Farmer, B.L., Mirau, P., Garrett, P. H. & Vaia, R. A. (2006) Dynamics of alkyl ammonium intercalants within organically modified montmorillonite: dielectric relaxation and ionic conductivity. The Journal of Physical Chemistry B, 110, 20143–20157.
Kamal, M.R., Calderon, J. U. & Lennox, R. B. (2009) Surface energy of modified nanoclays and its effect on polymer/clay nanocomposites. Journal of Adhesion Science Technology, 23, 663688.
Kunz, D.A., Max, E., Weinkamer, R., Lunkenbein, T., Breu, J. & Fery, A. (2009) Deformation measurements on thin clay tactoids. Small, 5, 1816–1820.
Kuppa, V. & Manias, E. (2002) Computer simulation of PEO/layered silicate nanocomposites: 2. Lithium dynamics in PEO/Li+ montmorillonite intercalates. Chemistry of Materials, 14, 2171–2175.
Lagaly, G. (1976) Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie International Edition, 15, 575–586.
Lagaly, G. & Dekany, I. (2005) Adsorption on hydrophobized surfaces: clusters and self-organization. Advances in Colloid and Interface Science, 114, 189–204.
Lagaly, G. & Weiss, A. (1970) Arrangement and orientation of cationic tensides on silicate surfaces. 2. Paraffin-like structures in alkylammonium layer silicates with a high layer charge (mica). Kolloid-Zeitschrift und Zeitschrift für Polymere, 237, 364368.
Lagaly, G. & Weiss, A. (1971) Arrangement and orientation of cationic tensides on silicate surfaces. 4. Arrangement of alkylammonium ions in lowcharged silicates in films. Kolloid-Zeitschrift und Zeitschrift für Polymere, 243, 48–55.
Lee, J. H. & Guggenheim, S. (1981) Single crystal X-ray refinement of pyrophyllite-1Tc. American Mineralogist, 66, 350–357.
Lewin, M., Mey-Marom, A. & Frank, R. (2005) Surface free energies of polymeric materials, additives, and minerals. Polymers for Advanced. Technologies, 16, 429–441.
Lewis, J., Schwarzenbach, D. & Flack, H. D. (1982) Electric field gradients and charge density in corundum, α-Al2O3 . Acta Crystallographica Section A, A38, 733–739.
Lin, F.H., Lee, Y.H., Jian, C.H., Wong, J.M., Shieh, M.J. & Wang, C. Y. (2002) A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials, 23, 1981–1987.
Lipsicas, M., Raythatha, R.H., Pinnavaia, T.J., Johnson, I.D., Giese, R.F., Constanzo, P. M. & Robert, J. L. (1984) Silicon and aluminium site distribution in 2:1 layered silicate clays. Nature, 309, 604–607.
Mazo, M.A., Manevitch, L.I., Gusarova, E.B., Shamaev, M.Y., Berlin, A.A., Balabaev, N. K. & Rutledge, G. C. (2008) Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 1. Isolated clay nanoplate. The Journal of Physical Chemistry B, 112, 2964–2969.
McNeil, L. E. & Grimsditch, M. (1993) Elastic moduli of muscovite mica. Journal of Physics: Condensed Matter, 5, 1681–1690.
Michot, L.J., Villieras, F., Francois, M., Yvon, J., LeDred, R. & Cases, J. M. (1994) The structural microscopic hydrophilicity of talc. Langmuir, 10, 3765–3773.
Mooney, R.W., Keenan, A. G. & Wood, L. A. (1952a) Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory. Journal of the American Chemical Society, 74, 1367–1374.
Mooney, R.W., Keenan, A. G. & Wood, L. A. (1952b) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. Journal of the American Chemical Society, 74, 1371–1374.
Ngo, T. & Schwarzenbach, D. (1979) The use of electric field gradient calculations in charge density refinements. II. Charge density refinement of the lowquartz structure of aluminum phosphate. Acta Crystallographica Section A, A35, 658–664.
Ogawa, M., Ishii, T., Miyamoto, N. & Kuroda, K. (2001) Photocontrol of the basal spacing of azobenzenemagadiite intercalation compound. Advanced Materials, 13, 1107–1109.
Ogawa, M., Ishii, T., Miyamoto, N. & Kuroda, K. (2003) Intercalation of a cationic azobenzene into montmorillonite. Applied Clay Science, 22, 179–185.
Okada, T., Watanabe, Y. & Ogawa, M. (2005) Photoregulation of adsorption behavior of phenol for azobenzene-clay intercalation compounds. Journal of Materials Chemistry, 15, 987–992.
Osman, M. A. & Suter, U. W. (1999) Dodecyl pyridinium alkali metals ion exchange on muscovite mica. Journal of Colloid and Interface Science, 214, 400–406.
Osman, M. A. & Suter, U. W. (2000) Determination of the cation-exchange capacity of muscovite mica. Journal of Colloid and Interface Science, 224, 112–115.
Osman, M.A., Moor, C., Caseri, W. R. & Suter, U. W. (1999) Alkali metals ion exchange on muscovite mica. Journal of Colloid and Interface Science, 209, 232–239.
Osman, M.A., Seyfang, G. & Suter, U. W. (2000) Twodimensional melting of alkane monolayers ionically bonded to mica. The Journal of Physical Chemistry B, 104, 4433–4439.
Osman, M.A., Ernst, M., Meier, B. H. & Suter, U. W. (2002) Structure and molecular dynamics of alkane monolayers self-assembled on mica platelets. The Journal of Physical Chemistry B, 106, 653–662.
Osman, M.A., Ploetze, M. & Skrabal, P. J. (2004) Structure and properties of alkylammonium monolayers self-assembled on montmorillonite platelets. The Journal of Physical Chemistry B, 108, 2580–2588.
Osman, M.A., Rupp, J.E.P. & Suter, U. W. (2005) Gas permeation properties of polyethylene-layered silicate nanocomposites. Journal of Materials Chemistry, 15, 1298–1304.
Pandey, R.B., Anderson, K.L., Heinz, H. & Farmer, B. L. (2005) Conformation and dynamics of a selfavoiding sheet: bond-fluctuation computer simulation. Journal of Polymer Science B, 43, 1041–1046.
Pandey, R.B., Heinz, H., Farmer, B.L., Drummy, L.F., Jones, S.E., Vaia, R. A. & Naik, R. R. (2010) Layer of clay platelets in a peptide matrix: Binding, encapsulation and morphology. Journal of Polymer Science B, 48, 2566–2574.
Parbhakar, A., Cuadros, J., Sephton, M. A., Dubbin, W., Coles, B. J. & Weiss, D. (2007) Adsorption of Llysine on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307, 142–149.
Patwardhan, S.V., Emami, F.S., Berry, R.J., Jones, S.E., Naik, R.R., Deschaume, O., Heinz, H. & Perry, C. C. (2012) Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Journal of the American Chemical Society, 134 (published online).
Paul, D. R. & Robeson, L. M. (2008) Polymer nanotechnology: Nanocomposites. Polymer, 49, 3187–3204.
Pawley, A.R., Clark, S. M. & Chinnery, N. J. (2002) Equation of state measurements of chlorite, pyrophyllite, and talc. American Mineralogist, 87, 1172–1182.
Pospisil, M., Capkova, P., Merinska, D., Malac, Z. & Simonik, J. (2001) Structure analysis of montmorillonite intercalated with cetylpyridinium and cetyltrimethylammonium: Molecular simulations and XRD analysis. Journal of Colloid and Interface Science, 236, 127–131.
Pospisil, M., Kalendova, A., Capkova, P., Simonik, J. & Valaskova, M. (2004) Structure analysis of intercalated layer silicates: Combination of molecular simulations and experiment. Journal of Colloid and Interface Science, 277, 154–161.
Ray, S. S. & Bousmina, M. (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50, 962–1079.
Rothbauer, R. (1971) Untersuchung eines 2M1- Muskovits mit Neutronenstrahlen. Neues Jahrbuch für Mineralogie., Monatshefte, 143–154. Sachse, W. & Ruoff, A. L. (1975) Elastic moduli of precompressed pyrophyllite used in ultrahigh-pressure research. Journal of Applied Physics, 46, 3725–3730.
Sanz, J. & Serratosa, J. M. (1984) 29Si and 27A1 highresolution MAS-NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 4790–4793.
Sato, H., Yamagishi, A. & Kawamura, K. (2001) Molecular simulation for flexibility of a single clay layer. The Journal of Physical Chemistry B, 105, 7990–7997.
Schoonheydt, R. A. & Johnston, C. T. (2007) Surface and interface chemistry of clay minerals. Pp. 87–112 in: Handbook of Clay Science I. (Bergaya, F. & Theng, B.K.G., editors). Elsevier Science Ltd, Amsterdam.
Schoonheydt, R. A. & Johnston, C. T. (2011) The surface properties of clay minerals. Pp. 335–370 in: Layered Mineral Structures and their Application in Advanced Technologies (M.F. Brigatti & A. Mottana, editors). The European Mineralogical Union.
Simmons, G. & Wang, H. (1971) Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd edition. MIT Press, Cambridge, MA.
Smyth, J.R., Jacobsen, S.D., Swope, R.J., Angel, R.J., Arlt, T., Domanik, K. & Holloway, J. R. (2000) European Journal of Mineralogy, 12, 955–963.
Suter, J. L. & Coveney, P. V. (2009) Materials properties of clay nanocomposites: onset of negative Poisson ratio in large-scale molecular dynamics simulation. Soft Matter, 5, 3896–3904.
Teppen, B.J., Rasmussen, K., Bertsch, P.M., Miller, D. M. & Schafer, L. (1997) Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. The Journal of Physical Chemistry B, 101, 1579–1587.
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. & Kamigaito, O. (1993) Synthesis of Nylon-6-Clay Hybrid. Journal of Materials Research, 8, 1179–1184. [A similar contribution was first reported at the Fall National Meeting of the American Chemical Society, 1987].
Vaia, R.A., Teukolsky, R. K. & Giannelis, E. P. (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017–1022.
Vaia, R. A. & Giannelis, E. P. (1997) Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules, 30, 8000–8009.
Van Olphen, H. (1977) An Introduction to Clay Colloidal Chemistry. Wiley, New York.
Vanorio, T., Prasad, M. & Nur, A. (2003) Elastic properties of dry clay mineral aggregates, suspensions, and sandstones. Geophysical Journal International, 155, 319–326.
Vaughan, M. T. & Guggenheim, S. (1986) Elasticity of muscovite and its relationship to crystal structure. Journal of Geophysical Research, 91, 4657–4664.
Weiss, A., Mehler, A. & Hofmann, U. (1956) Organophile vermiculite. Zeitschrift für Naturforschung, 11b, 431–434.
Yariv, S. & Cross, H., editors (2002) Organo-Clay Complexes and Interactions. Dekker, New York.
Zartman, G.D., Liu, H., Akdim, B., Pachter, R. & Heinz, H. (2010) Nanoscale tensile, shear, and failure properties of layered silicates as a function of cation density and stress. The Journal of Physical Chemistry C, 114, 1763–1772.
Zeng, Q.H., Yu, A.B., Lu, G. Q. & Standish, R. K. (2004) Molecular dynamics simulation of the structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays. The Journal of Physical Chemistry B, 108, 10025–10033.
Zhu, J.X., He, H.P., Zhu, L.Z., Wen, X. Y. & Deng, F. J. (2005) Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. Journal of Colloid and Interface Science, 286, 239–244.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Clay Minerals
  • ISSN: 0009-8558
  • EISSN: 1471-8030
  • URL: /core/journals/clay-minerals
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed