Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T04:01:13.336Z Has data issue: false hasContentIssue false

Glutamic acid deamination in the presence of montmorillonite

Published online by Cambridge University Press:  09 July 2018

A. Naidja
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides-CNRS, 24, Avenue du Président Kennedy, 68200 Mulhouse, France
B. Siffert
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides-CNRS, 24, Avenue du Président Kennedy, 68200 Mulhouse, France

Abstract

Glutamic acid deamination was realized in the absence and in the presence of montmorillonite saturated with various metallic cations (Na+, Mn2+, Cu2+). The catalytic activity depends upon the interlayer exchangeable cation and the pH of the suspension. A maximum was observed near pH = 5–6. In the presence of the enzyme l-glutamate dehydrogenase and the coenzyme nicotinamide adenine dinucleotide, glutamic acid transforms into α-ketoglutaric acid, but in the presence of montmorillonite, it yields α-hydroxyglutaric acid and traces of butyric acid. However, kinetic and reaction yield are significantly reduced compared to the biological system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M., Elisabeth, S., Graham, S.H. & Thomas, J.M. (1982) Catalysed reactions of organic molecules at clay surfaces: Ester breakdown, isomerisation and lactonisation. J. Cat., 78, 197–208.Google Scholar
Adams, J.M. (1987) Synthetic organic chemistry using pillared cations-exchanged acid treated montmorillonite catalysts. A review. Applied Clay Sci., 2, 309–342.Google Scholar
Ballantine, J.A., Purnell, H., Rayanakorn, M., Thomas, J.M. & Williams, K.J. (1981a) Chemical conversion using sheet silicates: Novel intermolecular elimination of ammonia from amines. J. Chem. Soc. Comm., 910.Google Scholar
Ballantine, J.A., Davis, M., Purnel, H., Rayanakorn, M., Thomas, J.M. & Williams, K.J. (1981b) Chemical conversion using sheet silicates: Novel intermolecular dehydration of alcohols to ethers and polymers. J. Chem. Soc. Comm., 427428.Google Scholar
Bellamy, L.J. (1975) Carboxylic acids. Pp. 183-200 in: The Infra-Red Spectra of Complex Molecules., 1. Chapman & Hall, London.Google Scholar
Berk, Z. (1976) Braveman's Introduction to the Biochemistry of Food, p. 51. Elsevier, Amsterdam.Google Scholar
Boyd, S.A. & Mortland, M.M. (1985) Manipulating the activity of immobilized enzymes with different organo-smectite complexes. Experientia, 12, 1564–1566.Google Scholar
Boyd, S.A. & Mortland, M.M. (1986) Selective effects of smectite-organic complexes on the activities of immobilized enzymes. J. Mol. Cat., 34, 18.Google Scholar
Bzik, S., Church, F., Lawless, J., Levy, N., Mazzurco, J. & Mortland, M.M. (1983) The adsorption of biomonomers on to homoionic clays. NASA Conf. Pub., 2276, p. 53.Google Scholar
Corma, A. & Perez-Pariente, J. (1987) Catalytic activity of modified silicates. I. Dehydration of ethanol catalysed by acidic sepiolite. Clay Miner., 22, 423–433.Google Scholar
Cornelis, A. & Laszlo, P. (1985) Clay supported copper II and iron III nitrates. Novel multipurpose reagents for organic synthesis. Synthesis, 1, 909–918.Google Scholar
Cross, A.D. (1967) Introduction a la Pratique de la Spectroscopie Infra-rouge, pp. 102111. Azoulay, Paris.Google Scholar
Das Sarma, B. (1956) The structure of copper monoglutamate. J. Am. Chem. Soc., 78, 892–894.Google Scholar
Das Sarma, B. & Bailar, J.C. Jr. (1956) Partial resolution of diamines, aminoacids and dicarboxylic acids through coordination with optically active complexes. J. Am. Chem. Soc., 78, 895–897.Google Scholar
De Koke, P.M.T., Donkersloot, M.C.A., Meulendijks, G.W.M., Bastiaansen, L.A.M., Kanters, J.A. & Buck, H.M. (1986) Stereoselective hybride uptake in model systems related to the redox NAD+/NADH. Tetrahedron J., 42, 941–960.Google Scholar
Garwood, G.A., Mortland, M.M. & Pinnavaia, T.J. (1983) Immobilisation of glucose oxydase on montmorillonite clay, hydrophobic and ionic modes of binding. J. Mol. Cat., 22, 153–163.Google Scholar
Giles, C.H., McEwan, T.H., Nakhawa, R. & Smith, A. (1960) Studies in adsorption, part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Am. Chem. Soc., 82, 3973–3993.Google Scholar
Girdar, H.L., Parween S, & Puri, M.K. (1976) Stability constants of glutamic acid complex with some metal ions. Ind. J. Chem., 14A 10211022.Google Scholar
Graf, G. & Lagaly, G. (1980) Interaction of clay minerals with adenosine-5-phosphate. Clays Clay Miner., 28, 12–18.Google Scholar
Kirshon, B. & Barsily, I. (1959) Les complexes du cuivre avec Taspargine, la glutamine, Tacide aspartique et l'acide glutamique: formation et composition. Bull. Soc. Chim. Fr., 901907.Google Scholar
Kroll, N. (1952) Manganous complexes with several aminoacids. J. Am. Chem Soc., 74, 2034–2039.Google Scholar
Lagaly, G. & Hermann, H. (1983) ATP-clays interactions. Proc. 5th Meet. European Clay Groups, Prague,, 269277.Google Scholar
Laing, D.K. & Petit, D.L. (1975) Ligands containing elements of group 6 B. Part. VII. Comparison of the donor properties of some dicarboxylic acids of sulfur, selenium, and tellurium towards silver and some bivalent metal ions. J. Chem. Soc. Dalton. Trans., 22972300.CrossRefGoogle Scholar
Laszlo, P. (1987) Chemical reactions on clays. Science, 235, 1473–1477.Google Scholar
Li, N.C. & Doody, E. (1952) Metal-aminoacid complexes. II. Polarographic and potentiometric studies on complex formation between copper(II) and aminoacid ions. J. Am. Chem. Soc., 74, 41844188.Google Scholar
Little, L.H. (1966) Lewis and Bronsted acid sites on oxide catalysts. Pp. 180197 in: Infrared Spectra of Adsorbed Species. Academic Press, London.Google Scholar
Louisot, P. (1983) Catabolismes, energetique cellulaire, biosynthese, hormones. P. 717 in: Biochimie Generale et Medicale, Structurale, Metabolique, Semeiologique. Simep ed., Paris.Google Scholar
Margulies, L., Rosen, H. & Nir, S. (1988) Model for competitive adsorption of organic cations on clays. Clays Clay Miner., 36, 270–276.Google Scholar
Micera, G., Pusino, A., Gessa, C. & Petretto, S. (1988) Interaction of fluazifop with Al3+-, Fe3+-, and Cu2+- saturated montmorillonite. Clays Clay Miner, 36, 354358.Google Scholar
Morgan, H.W. & Corke, C.T. (1976) Adsorption, desorption, and activity of glucose oxydase on selected species. Can. J. Microbiol, 22, 684–693.Google Scholar
Morgan, H.W. & Corke, C.T. (1977) Release of flavine adenine dinucleotide on adsorption of the enzyme glucose oxydase to clays. Can. J. Microbiol., 23, 1110–1117.CrossRefGoogle Scholar
Mortland, M.M. (1984) Deamination of glutamic acid by pyridoxal phosphate-Cu-smectite, catalysts. J. Mol. Cat. 21,, 143155.Google Scholar
Naidja, A. (1988) Action catalytique des argiles de type smectites dans les reactions biochimiques. Thèse de Doctorat, Univ. Haute Alsace, Mulhouse, France.Google Scholar
Nambiar, K.P., Stauffer, D.M., Kolodziej, P.A. & Bonner, S.A. (1983) A mechanistic basis for the stereoselectivity of enzymatic transfer of hydrogen from nicotinamide cofactors. J. Am. Chem. Soc., 105, 5886–5890.Google Scholar
Sabine, D., Nyberg, H.T. & Cefola, M. (1964) The preparation and isolation of metalloglutamic acid complexes. Arch. Biochem. Biophys., 104, 166–168.Google Scholar
Siffert, B. & Kessaissia, S. (1978) Contribution au mecanisme d'adsorption des a-aminoacides par la montmorillonite. Clay Miner., 13, 255–270.Google Scholar
Siffert, B. & Larson, N. (1983) Formation of lysozyme-containing crystal of montmorillonite. J. Coll. Inter. Sci., 93, 424431.Google Scholar
Siffert, B. & Naidja, A. (1987) Decarboxylation catalytique de Tacide oxaloacetique en presence de montmorillonite. Clay Miner., 22, 435–446.Google Scholar
Streitwieser, A.H. & Heathcock, C.H. (1981) Special topics. P. 1183 in: Introduction to Organic Chemistry., 2e ed. Collier Macmillan International editions, New York.Google Scholar
Sugahara, Y., Satokawa, S., Kuroda, K. & Kato, C. (1988) Evidence for the formation of interlayer polyacrylonitrile in kaolinite. Clays Clay Miner., 36, 343–348.Google Scholar
Theng, B.K.G. (1974) Organic reactions catalysed by clay minerals. Pp. 261-281 in: The Chemistry of Clay Organic Reactions. Adam Hilger Ltd, London.Google Scholar
Thomas, F., Andreux, F. & Bottero, J.Y. (1983) Etude thermodynamique de Tadsorption de Tion dodecylammonium sur le kaolin et application aux mecanismes d'adsorption des aminoacides et des peptides. Proc. 5th Meet. European Clay Groups, Prague,, 259268.Google Scholar
Weiss, A. (1981) Replication and evolution in inorganic systems. Angew. Chem. Int. Ed., 20, 850–860.Google Scholar