Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-15T23:14:50.687Z Has data issue: false hasContentIssue false

A mineralogical and geochemical approach to establishing a sedimentary model in a passive continental margin (Subbetic Zone, Betic Cordilleras, SE Spain)

Published online by Cambridge University Press:  09 July 2018

M. Ortega-Huertas
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Geología Mediterránea, Universidad de Granada, Spain
I. Palomo
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Geología Mediterránea, Universidad de Granada, Spain
M. Moresi
Affiliation:
Dipartimento Geomineralogico, Università di Bari
M. Oddone
Affiliation:
Dipartimento di Chimica Generale, Università di Pavia, Italy

Abstract

The spatial and vertical distributions of six clay mineral assemblages were identified in the pelagic marls and marly limestones and in the Ammonitico Rosso of the Lower Jurassic in the Betic Cordilleras (SE Spain). The six assemblages contain varying proportions of illite, kaolinite, chlorite, smectite and mixed-layer illite-smectite. The clay mineralogy and the geochemical data, particularly for the rare earth elements, indicate that the sediments were deposited in a pelagic environment influenced by a nearby continent. The source areas were many and lithologically varied. Clay mineralogy and geochemistry are shown to be most useful in the reconstruction of the palaeogeography of a basin in a passive continental margin.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andeol, B. (1985) Contribution à l'àtude minàralogique et gàochimique de la fraction dàcarbonatee des sàdiments pàlagiques dans les Zones Externes des Cordilleres Bàtiques (Espagne) et dans le Site DSDP 391-C (Atlantique Quest).Ph thesis, Univ. P. et Curie, M., Paris, France.Google Scholar
Barahona Fernandez, E. (1974) Arcillas de ladrilleria de laprovincia de Granada: evaluacion de algunos ensayos de materias primas. Ph thesis, Univ. Granada, Spain.Google Scholar
Blumenthal, M.M. (1927) Versuch einer tektonischen Gliederung der betischen Cordilleren von central und slidwest Andalusien. Eclog. Geol. Helv., 20, 487–532.Google Scholar
Braga, J.C., Comas, M.C., Delgado, F., Garcia Hernandez, M., Jimenez, A.P., Linares, A., Rivas, P. & Vera, J.A. (1981) The Liassic Rosso Ammonitico facies in the Subbetic Zone. Genetic considerations. Rosso Ammonitico Symp. Proc., 6176.Google Scholar
Braga, J.C., Garcia, R., Jimenez, A.P. & Rivas, P. (1982) Correlaciones en el Lias de las Cordilleras Bàticas. PIGC Real Acad. Ciencias Exactas, Fisicas y Natureles, Madrid, vol. especial, 161181.Google Scholar
Courtois, Ch. & Hoffert, M. (1979) Distribution des terres rares dans les sediments superficiels du Pacifique sudest. Bull. Soc. geol. France, 19, 1245–1251.Google Scholar
Fallot, P. (1948) Les Cordilleres Betiques. Est. Geol., 8, 83–172.Google Scholar
Fontbote, J.M. (1970) Sobre la historia preorogenica de las Cordilleras Beticas. Cuad. Geol., 1, 71–78.Google Scholar
Franceschelli, M., Mellini, M. & Ricci, C.A. (1986) Fine-scale chlorite-muscovite association in low grade metapelites from Nurra (NW Sardinia) and the possible misidentification of metamorphic vermiculite. Contr. Mineral. Pet., 93, 137–143.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. (1975) Revisione di una metodologia analitica per Fluorescenza-X, basata sulla correzione degli effetti di matrice. Rend. Soc. Ital. Mineral. Petrol., 21, 365–378.Google Scholar
García Hernández, M., L6pez Garrido, A.C., Rivas, P., Sanz de Galdeano, C. & Vera, J. (1980) Mesozoic palaeogeographic evolution of the External Zones of the Betic Cordillera. Geol. Mijnbouw, 59, 155–168.Google Scholar
GreenE-Kelly, R. (1953) Identification of montmorillonoids. J. Soil Sci., 4, 233–237.Google Scholar
Harker, R.I. & Tuttle, O.F. (1955) Studies in the system CaO-MgO-CO2: I. The thermal dissociation of calcite, dolomite and magnesite. II. Limits of solid solution along the binary join CaCO3-MgCO3. Am. J. Sci., 253, 274282.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamorphisme para la cristallinite de Tillite. Bull. Centre Rech. Pau- SNPA, 2, 385–397.Google Scholar
Leoni, L. & Saitta, M. (1976) X-ray fluorescence analyses of 29 trace elements in rock and mineral standards. Rend. Soc. Ital. Mineral. Petrol., 32, 497–510.Google Scholar
Liborio, G. & Mottana, G. (1973) I carbonati dei calcescisti in relazione alia distribuzione delle temperature metamorfiche alpine. Rend. Soc. Ital. Mineral. Petrol. XXIX, 4380.Google Scholar
Liebling, R.S. & Scherp, H.S. (1980) Chlorite and mica as indicators of provenance. Clays Clay Miner., 28, 230232.Google Scholar
L6pez Aguayo, F. & Caballero, M.A. (1973) Los minerales de la arcilla y su contribucion a la diferenciacion de facies sedimentarias. Est. Geol, 29, 131–143.Google Scholar
López Munguira, A. (1987) Mineralogia y geoquimica de las rocas metamórficas Precámbricas de las Zonas de Ossa-Morena y Centro-Ibárica (Macizo Hesperico Meridional).Ph thesis, Univ. of Extremadura, Spain. Mira, F. (1987) Foramimferos del Lias margoso de las Cordilleras Beticas. Zona Subbetica.Ph thesis, Univ. Granada, Spain.Google Scholar
Morad, S. (1986) Mica-chlorite intergrowths in very low-grade metamorphosed sedimentary rocks from Norway. Neues Jahrb. Miner. Abh., 154, 271–287.Google Scholar
Muller, G., Irien, G. & Forstner, U. (1972) Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrines environments. Naturwissenschaften, 59, 158–164.Google Scholar
Nieto, F. & Rodriguez Gallego, M. (1983) Las cloritas de la Cordilleras Beticas (Espana). Su composicion y factores que la determinan. Rend. Soc. Ital. Mineral. Petrol., 38, 1437–1445.Google Scholar
Nieto, F., Ortega-Huertas, M. & Velilla, N. (1989) Some crystallochemical and petrographic criteria for determining source rocks and sedimentary processes. The example of Neogene deposits of the Alpujarran Corridor (Betic Cordillera, SE Spain), Clay Miner., 24, 603–616.Google Scholar
Ortega-Huertas, M. (1990) Clay minerals and the evolution of the Subbetic Zone (Betic Cordillera, SE Spain). Jurassic pelagic sedimentation and Cretaceous sediments deposited in an extensive paleomargin environment. Lectures—6th Meet. European Clay Groups, Sevilla(Perez-Rodriguez, J.L. & Galan, E., editors), 117136.Google Scholar
Ortega-Huertas, M., Palomo, I. & Fenoll Hach-Ali, P. (1985) Mineral composition of the Jurassic sediments in the Subbetic Zone, Betic Cordillera, SE Spain. Miner. Petrog. Acta, 29-A, 231243.Google Scholar
Palomo, I. (1987) Mineralogia y geoquimica de sedimentos pelagicos del Jurasico inferior de las Cordilleras Beticas (SE Espana).Ph thesis, Univ. Granada, Spain.Google Scholar
Palomo, I., Ortega-Huertas, M. & Fenoll Hach-Ali, P. (1985) The significance of clay minerals in studies of the evolution of the Jurassic deposits of the Betic Cordillera, SE Spain. Clay Miner., 20, 39–52.Google Scholar
Rey, J.Ph. & Kübler, B. (1983) Identification des micas des séries sedimentaires par diffraction X a partir de la série harmonique (001) des preparations orientées. Schweiz, mineral, petrogr. Mitt., 63, 13–36.Google Scholar
Schuber, N. (1984) Géochimie des carbonates (elements traces et isotopes stables), aux environs de la limite Jurassique-Cretace sur une transversale des Zones Externes de Cordilléres Bétiques et dans le site DSDP391 -C de I'Antlantique Central. Ph thesis, Univ. P. et Curie, M., Paris, France.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv, Prof. Papers, 391-C, 131.Google Scholar
Seyfried, J. (1979) Ensayo sobre el significado paleogeografico de los sedimentos jurésicos de las Cordilleras Beticas orientales. Cuad. Geol., 10, 317–348.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments. A review. Earth Sci. Reviews, 21, 251–293.Google Scholar
Stephens, W.E., Watson, S.V., Philips, P.R. & Weir, J.A. (1975) Element association and distribution through a Lower Palaeozoic graptolitic shale sequence in the Southern Uplands of Scotland. Chem. Geol., 16, 269–294 Google Scholar
Taylor, S.R. (1965) The application of trace element data to problems in Petrology. Phys. Chem. Earth., 6, 133214.Google Scholar
Vera, J.A., Palomo, I. & Ortega-Huertas, M. (1989) Influencia del paleokarst en la mineralogia de arcillas del Lias de Algarinejo (Subbético Medio). Geogaceta, 6, 16–19.Google Scholar
Whittle, C.K. (1986) Comparison of sedimentary chlorite compositions by X-ray diffraction and analytical TEM. Clay Miner., 21, 937–947.Google Scholar