Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-04T18:16:13.925Z Has data issue: false hasContentIssue false

Mineralogy and geochemistry of Devonian detrital rocks from the Iberian Range (Spain)

Published online by Cambridge University Press:  09 July 2018

B. Bauluz Lazaro
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pza San Francisco s/n, 50.009 Zaragoza, Spain
M.J. Mayayo Burillo
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pza San Francisco s/n, 50.009 Zaragoza, Spain
C. Fernandez-Nieto
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pza San Francisco s/n, 50.009 Zaragoza, Spain
J.M. Gonzalez Lopez
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pza San Francisco s/n, 50.009 Zaragoza, Spain

Abstract

Two profiles in Devonian marine deposits have been studied, consisting of pelites, subgreywackes, greywackes and quartzites. Quartz and clay minerals are major components and feldspar and calcite are minor ones. Phyllosilicates in the fine fractions are kaolinite and illite; kaolinite has a high degree of ordering; illite is predominantly of a 1Md polytype, with low Na content and poor crystallinity and has a phengitic composition in greywackes, whereas in pelites it is muscovitic in composition. Both phyllosilicates may be inherited from a source area with intensive weathering processes, although illite may also be a diagenetic phase. These mineral characteristics indicate that the Devonian rocks did not reach the anchizone boundary in their post-depositional evolution.

The chemical composition of pelites and subgreywackes reveals a high degree of chemical maturity. Chondrite-normalized REE patterns indicate a higher degree of weathering of these Devonian sediments than of Post-Archaean Australian Shales (PAAS), possibly as a consequence of sedimentary recycling processes. The REE patterns of the Devonian rocks in addition to the high Th/Sc, La/Sc and Th/Co ratios suggest a felsic composition of the primitive source area, probably a K-rich granite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balashov, Y.A., Ronov, A.V., Migdisov, A.A. & Turanskaya, N.V. (1964) The effect of climate and facies environment in the fractionation of the rare earths during sedimentation. Geochem. Int. 10, 951969.Google Scholar
Barahona, E. (1974) Arciltas de ladrillería de la provincia de Granada: Evaluación de algunos ensayos de materias primas. PhD thesis, Univ. Granada, Spain.Google Scholar
Boles, J.R. & Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation. J. Sed. Pet. 49, 5570.Google Scholar
Cantrell, K.J. & Byrne, R.H. (1987) Rare earth element complexation by carbonate and oxalate ions. Geochim. Cosmochim. Acta, 51, 597–605.CrossRefGoogle Scholar
Cares, P. (1988) The Devonian of Celtiberia (Spain) and Devonian paleogeography of SW Europe. Pp. 421-466 in: Devonian of the World, (McMillan, N.J., Embry, M.F. & Glass, D.J., editors). Canadian Society of Petroleum Geology, Memoir 14. Proc. 2nd Int. Sym. Devonian System, Calgary.Google Scholar
Cares, P. & Gandl, J. (1967) The lower Devonian of the Eastern Iberian Chains (NE Spain) and the distribution of its Spiriferacea, Acastavinae and Asteropyginae. Int. Sym. Devonian System, Calgary, 2, 453464.Google Scholar
Dunoyer De SEGONZAC, G. (1969) Les mineraux argileux dans la diagènese passage au métamorphisme. Mere. Serv. Carte Géol. Als. Lorr., 29, Strasbourg.Google Scholar
Garrels, R.M. & Howard, P. (1959) Reactions of feldspar and mica with water at low temperature and pressure. Clays Clay Miner. 6, 68–88.Google Scholar
Gozalo, R. (1990) Geología y paleontología (ostracodos) del Devónico superior de Tabuenca (NE de la Cadena Ibérica Oriental). PhD thesis, Univ. Zaragoza, Spain.Google Scholar
Gozalo, R. & Linan, E. (1988) Los materiales hercfnicos de la Cordillera Ibérica en el contexto del Macizo Ibérico. Estudios Geol. 44, 399404.Google Scholar
Gurdotn, Ch. V. (1984) Micas in metamorphic rocks. Pp. 357-467 in: Micas (Bailey, S.W., editor), Reviews in Mineralogy, 13. Mineralogical Society of America, Washington.Google Scholar
Harnois, L. (1988) The CIW index: a new chemical index of weathering. Sediment. Geol. 55, 319322.Google Scholar
Hinckley, D.N. (1963) Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 11, 229235.Google Scholar
Hower, J., Eslinger, E.V. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725737.Google Scholar
Kish, J. (1990) Calibration of the anchizone: a critical comparison of illite ‘crystallinity’ scales used for definition. J. Met. Geol. 8, 3146.CrossRefGoogle Scholar
Kubler, B. (1968) Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bull. Centre Rech. Pau-S.N.P.A. 2, 385397.Google Scholar
Long, G. & Neglia, S. (1968) Composition de l'eau interstitielle des argiles et diagenèse des mineraux argileux. Rev. Inst. Fr. Pétrol. 23, 5369.Google Scholar
Maxwell, D.T. & Hower, J. (1967) High-grade diagenesis and low-grade metamorphism of illite in the precambrian belt series. Am. Miner. 52, 843–857.Google Scholar
Mclennan, S.M. & Hemming, S. (1992) Sm/Nd elemental and isotopic systematics in sedimentary rocks. Geochim. Cosmochim. Acta, 56, 887898.Google Scholar
Mclennan, S.M. & Taylor, S.R. (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J. Geol. 99, 121.CrossRefGoogle Scholar
Muffler, L.J.P. & White, D.F. (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton trough, Southeastern California. Bull Geol. Soc. Am. 80, 157182.Google Scholar
Nesbitt, H.W. & YOUN6 G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.Google Scholar
Nesbitt, H.W., Markovics, G. & Price, R.C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, 44, 1659–1666.Google Scholar
Ronov, A.B., Balashov, Y.A. & Migdisov, A.A. (1967) Geochemistry of the rare earths in the sedimentary cycle. Geochem. Int. 4, 1–17.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre shale. U.S. Geol. Prof. Paper, 391-e, pp.31.Google Scholar
Srodon, J. (1984) X-ray identification of illitic materials. Clays Clay Miner. 32, 337349.Google Scholar
Stoch, L. (1974) Clay minerals. Geol. Publ., Varsaw, 186-193.Google Scholar
Taylor, S.R. & Mclennan, S.M. (1985) The Continental Crust.” Its Composition and Evolution. Blackwell Scientific Publications, Oxford.Google Scholar
Varshal, G.M., Senyavin, M.M. & Yartseva, R.D. (1975) Forms of calcium and REE in river waters. Pp. 597–603 in: Recent Contributions to Geochemistry and Analytical Chemistry. (Tugarinov, A.I., editor), Wiley, New York.Google Scholar
Velde, B. (1965) Experimental determination of muscovite polymorph stabilities. Am. Miner. 50, 436449.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40, pp. 172–174. Elsevier Science Publishers.Google Scholar
Velde, B. & Kornprobst, J. (1969) Stabilit6 des silicates d'alumine hydrat6s. Contr. Mineral. Pet. 21, 6374.Google Scholar
Winkler, H.G.F. (1964) Das T.P. Feld der diagenese und niedrigtemperierten metamorphose auf grund yon mineralreaktionen. Bertr. Min. Petr. 10, 70–93.Google Scholar
Wronkiewicz, D.J. & Condie, K.C. (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim. Cosmochim. Acta, 51, 24012416.Google Scholar
Yoder, H.S. & Eugster, H.P. (1954) Syntheses and stability of the muscovites. Am. Miner. 39, 350–351.Google Scholar