Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T17:57:45.278Z Has data issue: false hasContentIssue false

Natural Cuban zeolites for medical use and their histamine binding capacity

Published online by Cambridge University Press:  27 February 2018

T. Selvam
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Chemical Reaction Engineering, Egerlandstraße 3, D-91058 Erlangen, Germany
W. Schwieger
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Chemical Reaction Engineering, Egerlandstraße 3, D-91058 Erlangen, Germany
W. Dathe*
Affiliation:
Heck Bio-Pharma, Karlstraße 5, D-73650 Winterbach, Germany
*

Abstract

The work reported herein involves the characterization of natural zeolites from two different mines (San Andrés and Tasajeras; Cuba) using XRD, SEM, TG-DTA, ICP and surface area measurements. In addition, the chemical composition of zeolites, the heavy metal and environmental organic toxins content, the ion exchange rates, stability under biological conditions using simulated body fluids as well as the binding capacity for histamine have been investigated with a view to using them as medical products. The investigated zeolites contain clinoptilolite and mordenite as major phases. Furthermore, the samples are apparently free from fibrous materials according to SEM observations. In particular, the San Andrés zeolite binds remarkable amounts of histamine which are nearly irreversible under acidic (pH = 1; 12.4 mg/g) and neutral conditions (pH = 7; 15.7 mg/g), respectively. Thus, the San Andrés sample may well be applied as a medical product due to its excellent binding capacity for histamine along with its remaining optimum physico-chemical characteristics.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akdis, C.A. & Simons, F.E.R. (2006) Histamine receptors are hot in immunopharmacology. European Journal of Pharmacology, 533, 6976.CrossRefGoogle ScholarPubMed
Andronikashvili, T., Pagava, K., Kurashvili, T. & Eprikashvili, L. (2009) Possibility of application of natural zeolites for medical purposes. Bulletin of the Georgian National Academy of Sciences, 3, 158167.Google Scholar
Beyer, H.K. (2002) Dealumination techniques for zeolites. Pp. 203–255 in: Molecular Sieves: Science and Technology (H.G. Karge & J. Weitkamp, editors), Springer-Verlag Berlin, Heidelberg, New York.Google Scholar
Bonferoni, M.C., Cerri, G., de’Gennaro, M., Juliano, C. & Caramella, C. (2007) Zn2+-exchanged clinoptiloliterich rock as active carrier for antibiotics in anti-acne topical therapy: In-vitro characterization and preliminary formulation studies. Applied Clay Science, 36, 95102.CrossRefGoogle Scholar
Caballero, B. (2013) Food intolerance. Pp. 315–332 in: Encyclopedia of Human Nutrition, 3rd edition (B. Caballero, L.H. Allen & A. Prentice, editors), Elsevier Limited.Google Scholar
Caputo, D. & Pepe, F. (2007) Experiments and data processing of ion exchange equilibria involving Italian natural zeolites: a review. Microporous and Mesoporous Materials, 105, 222231.CrossRefGoogle Scholar
Carbone, M., Baris, Y.I., Bertino, P., Brass, B., Comertpay, S., Dogan, A.U., Gaudino, G., Jube, S., Kanodia, S., Partridge, C.R., Pass, H.I., Rivera, Z.S., Steele, I., Tuncer, M., Way, S., Yang, H. & Miller, A. (2011) Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proceedings of the National Academy of Sciences of the United States of America, 108, 1361813623.CrossRefGoogle ScholarPubMed
Céspedes-Ortiz, M., Rodríguez-Iznaga, I., Petranovskii, V., Rizo-Beyra, R. & Aguilera-Domínguez, L. (2011) Zeolitas naturales de diferentes yacimientos cubanos: composición y estabilidad química y térmica. Revista Cubana de Química, 23, 8088.Google Scholar
Colella, C. (2011) A critical reconsideration of biomedical and veterinary applications of natural zeolites. Clay Minerals, 46, 295309.CrossRefGoogle Scholar
DIN (various dates with DIN number) Deutsches Institut für Normung e.V. Beuth Verlag GmbH, Berlin. Dyer A. (2000) Applications of natural zeolites in the treatment of nuclear wastes and fall-out. Pp. 319–368 in: Environment Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (J.D. Cotter-Howells, L.S. Campbell, E. Valsami- Jones & M. Batchelder, editors). The Mineralogical Society of Great Britain and Ireland.Google Scholar
Elizalde-González, M.P. & Pérez-Cruz, M.A. (2007) Interaction between organic vapors and clinoptilolite- mordenite rich tuffs in parent, decationized, and lead exchanged forms. Journal of Colloid and Interface Science, 312, 317325.CrossRefGoogle ScholarPubMed
Farías, T., de Ménorval, L.C., Zajac, J. & Rivera, A. (2010) Adsolubilization of drugs onto natural clinoptilolite modified by adsorption of cationic surfactants. Colloids and Surfaces B: Biointerfaces, 76, 421426.CrossRefGoogle ScholarPubMed
Farías, T., de Ménorval, L.C., Zajac, J. & Rivera, A. (2011) Benzalkonium chloride and sulfamethoxazole adsorption onto natural clinoptilolite: Effect of time, ionic strength, pH and temperature. Journal of Colloid and Interface Science, 363, 465475.CrossRefGoogle ScholarPubMed
Fass, R. (2012) Alternative therapeutic approaches to chronic proton pump inhibitor treatment. Clinical Gastroenterology and Hepatology, 10, 338345.CrossRefGoogle ScholarPubMed
Fertu, D.I.T. & Gavrilescu, M. (2012) Application of natural zeolites as sorbents in the clean-up of aqueous streams. Environmental Engineering & Management Journal, 11, 867878.Google Scholar
Flowers, J.L., Lonky, S.A. & Deitsch, E.J. (2009) Clinical evidence supporting the use of an activated clinoptilolite suspension as an agent to increase urinary excretion of toxic heavy metals. Nutrition and Dietary Supplements, 1, 1118.CrossRefGoogle Scholar
Grotzinger, J., Jordan, T.H., Press, F. & Siever, R. (2008) Pp. 12–164 in: Press/Siever – Allgemeine Geologie. (5. Auflage), Spektrum Akademischer Verlag, Heidelberg.Google Scholar
Hrenović, J., Milenković, J., Goic-Barisic, I. & Rajić, N. (2013) Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii. Microporous and Mesoporous Materials, 169, 148152.CrossRefGoogle Scholar
IARC Monographs (2012) Erionite. Pp. 311–316 in: Arsenic, metals, fibres, and dusts. Vol. 100C. A review of human carcinogens. IARC Monographs on the evaluation of carcinogenic risks to humans. WHO, Lyon, France.Google Scholar
Inglezakis, V.J., Zorpas, A.A., Loizidou, M.D. & Grigoropoulou, H.P. (2005) The effect of competitive cations and anions on ion exchange of heavy metals. Separation and Purification Technology, 46, 202207.CrossRefGoogle Scholar
Jevtić, S., Grujić, S., Hrenović, J. & Rajić, N. (2012) Surfactant-modified clinoptilolite as a salicylate carrier, salicylate kinetic release and its antibacterial activity. Microporous and Mesoporous Materials, 159, 3035.CrossRefGoogle Scholar
Jovanovic, M., Rajić, N. & Obradović, B. (2012) Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite. Journal of Hazardous Materials, 233–234, 5764.CrossRefGoogle Scholar
Koyama, K. & Takéuchi, Y. (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Zeitschrift für Kristallographie, 145, 216239.CrossRefGoogle Scholar
Krajišnik, D., Daković, A., Malenović A., Djekić L., Kragović M., Dobričić, V. & Milić, J. (2013) An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient. Microporous and Mesoporous Materials, 167, 94101.CrossRefGoogle Scholar
Kuley, E., Ozogul, F., Durmus, M., Gokdogan, S., Kacar, C., Ozogul, Y. & Ucar, Y. (2012) The impact of applying natural clinoptilolite (zeolite) on the chemical, sensory and microbiological changes of vacuum packed sardine fillets. International Journal of Food Science and Technology, 47, 19771985.CrossRefGoogle Scholar
Kyprianou, M. (2006) Verordnung (EG) Nr. 1881/2006 der Kommission vom 19. Dezember 2006 zur Festsetzung der Höchstgehalte für bestimmte Kontaminanten in Lebensmitteln. Amtsblatt der Europäischen Union, L 364/5, 20.12.2006.Google Scholar
Li, Hua, Shi, Wei-yu, Shao, Hong-bo & Shao, Ming-an (2009) The remediation of lead-polluted garden soil by natural zeolite. Journal of Hazardous Materials, 169, 11061111.CrossRefGoogle ScholarPubMed
Maintz, L. & Novak, N. (2007) Histamine and histamine intolerance. The American Journal of Clinical Nutrition, 85, 11851196.CrossRefGoogle ScholarPubMed
Ming, D.W. & Allen, E.R. (2001) Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. Pp. 619–654 in: Natural Zeolites: Occurrence, Properties, Applications (D.L. Bish & D.W. Ming, editors) Reviews in Mineralogy & Geochemistry, 45, Mineralogical Society of America, Washington.Google Scholar
Misaelides, P. (2011) Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144, 1518.CrossRefGoogle Scholar
Montalvo, S., Guerrero, L., Borja, R., Sanchez, E., Milán, Z., Cortés, I. & de la Rubia, M.A. (2012) Application of natural zeolites in anaerobic digestion processes: A review. Applied Clay Science, 58, 125133.CrossRefGoogle Scholar
Mumpton, F.A. (1999) La roca magica: Uses of natural zeolite in agriculture and industry. Proceedings of the National Academy of Sciences of the United States of America, 96, 34633470.CrossRefGoogle Scholar
O’Mahony, L., Akdis, M. & Akdis, C.A. (2011) Regulation of the immune response and inflammation by histamine and histamine receptors. Journal of Allergy and Clinical Immunology, 128, 11531162.CrossRefGoogle ScholarPubMed
Orozco, G. & Rizo, R. (1998) Depó sitos de zeolitas naturales de Cuba. Acta Geológica Hispánica, 33, 335349.Google Scholar
Pabalan, R.T. & Bertetti, F.P. (2001) Cation-exchange properties of natural zeolites. Reviews in Mineralogy & Geochemistry, 45, 453518.CrossRefGoogle Scholar
Pavelić, K. & Hadžija, M. (2003) Medical application of zeolites. Pp. 1453–1492 in: Handbook of Zeolite Sciences and Technology (S.M. Auerbach, K.A. Carrado & P.K. Dutta, editors) Marcel Dekker, Inc. New York.Google Scholar
Prasad, A.S. (2014) Chapter 25 – Zinc, Oxidative Stress in the Elderly and Implications for Inflammation. Pp. 259–275 in: Aging Oxidative Stress and Dietary Antioxidants (V.R. Preedy, editor) Academic Press, Elsevier Inc. USA.Google Scholar
Rivera, A., Rodríguez-Fuentes, G. & Altshuler, E. (2000) Time evolution of a natural clinoptilolite in aqueous medium: conductivity and pH experiments. Microporous and Mesoporous Materials, 40, 173179.CrossRefGoogle Scholar
Rivera, A., Farías, T., Ruiz-Salvador, A.R. & de Ménorval, L.C. (2003) Preliminary characterization of drug support systems based on natural clinoptilolite. Microporous and Mesoporous Materials, 61, 249259.CrossRefGoogle Scholar
Rodríguez-Fuentes, G. (2004) Characterization of ZZ a Zn2+clinoptilolite. Pp. 3052–3058 in: Recent Advances in the Science and Technology of Zeolites and Related Materials. Proceedings of the 14th International Zeolite Conference (E. van Steen, M. Claeys & L.H. Callanan, editors). Studies in Surface Science and Catalysis, no. 154C. Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Rodríguez-Fuentes, G., Barrios, M.A., Iraizoz, A., Perdomo, I. & Cedré, B. (1997) Enterex: Antidiarrheic drug based on purified natural clinoptilolite. Zeolites, 19, 441448.CrossRefGoogle Scholar
Rodríguez-Fuentes, G., Rivera Denis, A., Barrios Álvarez, M. & Iraizoz Colarte, A. (2006) Antacid drug based on purified natural clinoptilolite. Microporous and Mesoporous Materials, 94, 200207.CrossRefGoogle Scholar
Rožić, M., Cerjan-Stefanović, Š., Kurajica, S., Rožmarić Maěefat, M., Margeta, K. & Farkaš, A. (2005) Decationization and Dealumination of clinoptilolite tuff and ammonium exchange on acid-modified tuff. Journal of Colloid and Interface Science, 284, 4856.CrossRefGoogle ScholarPubMed
Sarkadi, L. (2004) Histamine in food. Pp. 176–185 in: Histamine: Biology and Medical Aspects (A. Falus, N. Grosman & Z. Darvas, editors), Karger Publishers.Google Scholar
Scheiber, I.F., Mercer, J.F.B. & Dringen, R. (2014) Metabolism and functions of copper in brain. Progress in Neurobiology, 116, 3357.CrossRefGoogle ScholarPubMed
Schroeder, J.I., Delhaize, E., Frommer, W.B., Guerinot, M.L., Harrison, M.J., Herrera-Estrella, L., Horie, T., Kochian, L.V. Munns, R., Nishizawa, N.K., Tsay, Y.-F. & Sanders, D. (2013) Using membrane transporters to improve crops for sustainable food production. Nature, 497, 6066.CrossRefGoogle ScholarPubMed
Schubert, M.L. (2012) Chapter 47 – Regulation of gastric acid secretion. Pp. 1281–1309 in: Physiology of the Gastrointestinal Tract (5th edition) (L.R. Johnson, editor), Volume 2, Elsevier Inc. Google Scholar
Stahl, T., Taschan, H. & Brunn, H. (2011) Aluminium content of selected foods and food products. Environmental Sciences Europe, 23, 3748.CrossRefGoogle Scholar
Tomečková, V., Reháková, M., Mojžišová, G., Magura, J., Wadsten, T. & Zelenáková, K. (2012) Modified natural clinoptilolite with quercetin and quercetin dihydrate and the study of their anticancer activity. Microporous and Mesoporous Materials, 147, 5967.CrossRefGoogle Scholar
Tomljenovic, L. & Shaw, C.A. (2011) Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? Journal of Inorganic Biochemistry, 105, 14891499.CrossRefGoogle Scholar
Wang, S. & Peng, Y. (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 1124.CrossRefGoogle Scholar
Westly, E. (2010) Nothing to sneeze at. Nature Medicine, 16, 10631065.CrossRefGoogle Scholar
Yokel, R.A. (2012) Aluminum in food – the nature and contribution of food additives. Pp. 203–212 in: Food Additive (Y. El-Samragy, editor), InTech Europe, Rijeka, Croatia.Google Scholar