Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-16T05:40:32.196Z Has data issue: false hasContentIssue false

Poly-phase alteration history of the kaolinitized ‘Cava di Caolino’ volcanics (Lipari Island, southern Italy)

Published online by Cambridge University Press:  09 July 2018

S. Decrée*
Affiliation:
Université Libre de Bruxelles, CP 160-02, Géochimie et Minéralogie, 50 av. F. Roosevelt, B-1050 Brussels
A. Bernard
Affiliation:
Université Libre de Bruxelles, CP 160-02, Géochimie et Minéralogie, 50 av. F. Roosevelt, B-1050 Brussels
J. Yans
Affiliation:
Faculté Polytechnique de Mons, Géologie Fondamentale et Appliquée, 9 rue de Houdain, B-7000 Mons
Th. De Putter
Affiliation:
Musée Royal de l'Afrique Centrale, Géologie Isotopique, 13 Leuvensesteenweg, B-3080 Tervuren, Belgium
*

Abstract

A 65 m thick altered volcanic profile was studied in the Cava di Caolino (Lipari Island) in order to (1) identify the alteration event(s), (2) model these events, and (3) propose estimates of the degree of chemical alteration (CIA, chemical index of alteration). Two mineral parageneses were identified: one comprising silico-aluminous phases, with well crystallized kaolinite (type 1), and the other comprising sulphates, with kaolinite as fracture infilling (type 2). The geochemistry of fluids analysed from a local hot spring (40°C, pH ≈ 8) allowed modelling of the observed silico-aluminous paragenesis. A later fumarolic event is suggested to be responsible for the sulphate paragenesis. The main stage of hydrothermal alteration lasted for ~50 ky, was marked by an increase in the CIA from the protolith (~52) to the alterites (~98), and resulted in the alteration of a 65 m thick series. Such data could be used to predict the alteration of volcanic rocks around underground nuclear waste repositories.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Africano, F. & Bernard, A. (2000) Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. Journal of Volcanology and Geothermal Research, 97, 475495.CrossRefGoogle Scholar
Baron, D. & Palmer, C.D. (1996) Solubility of jarosite at 4–35°C. Geochimica et Cosmochimica Ada, 60, 185195.Google Scholar
Bethke, C.M. (1996) Geochemical Reaction Modeling. Oxford University Press, New York, 397 pp.Google Scholar
Brea, L.B. & Cavalier, M. (1991) Isole Eolie, Vulcanologia, Archeologia. Oreste Ragusi Editore, Milan, pp. 78-82.Google Scholar
Bruno, P.P.G., Paolerri, V., Grimaldi, M. & Rappolla, A. (2000) Geophysical exploration for geothermal low enthalpy resources in Lipari Island, Italy. Journal of Volcanology and Geothermal Research, 98, 173188.Google Scholar
Decree, S., (2002) Mineralogie et geochimie des alterations de la ‘Cava di Caolino', Lipari, Italie. Unpublished MSc thesis, Brussels University, 114 pp.Google Scholar
De Putter, Th., Charlet, J.-M. & Quinif, Y. (1999) REE, Y and U concentration at the fluid-iron oxide interface in late Cenozoic cryptodolines from southern Belgium. Chemical Geology, 153, 139150.Google Scholar
De Putter, Th., Bernard, A., Perruchot, A., Nicaise, D. & Dupuis, Ch. (2000) Low-temperature acid weathering in Newhaven, Sussex, United Kingdom, and its application to theoretical modeling in radioactive waste-disposal sites. Clays and Clay Minerals, 48, 238246.Google Scholar
De Putter, Th., André, L., Bernard, A., Dupuis, Ch., Jedwab, J., Nicaise, D. & Perruchot, A. (2002) Trace element (Th, U, Pb, REE) behaviour in a cryptokarstic halloysite and kaolinite deposit from Southern Belgium: importance of « accessory » minerals neoformation for radioactive pollutant trapping. Applied Geochemistry, 17, 13131328.Google Scholar
De Putter, Th., Bernard, A., Perruchot, A., Yans, J., Verbrugghe, Fr. & Dupuis, Ch. (2003) Neoformed mineral parageneses in acid weathering systems: sedimentary vs. volcanic environments. ‘A Clay Odyssey', Proceedings of the 12th International Clay Conference (Bahia Blanca, Argentina. (E.A. Dominguez, G.R. Mas and F. Cravero, editors). Elsevier, Amsterdam, pp. 57-64.Google Scholar
Delmelle, P. & Bernard, A. (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochimica et Cosmochimica Ada, 58, 2445–2460.Google Scholar
Giese, R.F. Jr. (1988) Kaolin minerals: structures and stabilities. Pp. 29–66 in: Hydrous Phyllosilicate. (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Gioncada, A., Mazzuoli, R., Bisson, M. & Pareschi, M.T. (2003) Petrology of volcanic products younger than 42 ka on the Lipari-Vulcano complex (Aeolian Islands, Italy): an example of volcanism controlled by tectonics. Journal of Volcanology and Geothermal Research, 122, 191220.Google Scholar
Herbert, R.B. (1997) Properties of goethite and jarosite precipitated from acidic groundwater, Dalarna, Sweden. Clays and Clay Minerals, 45, 261273.Google Scholar
Lo Cascio, P., Pasta, S., Rossi, P.L., Tranne, C.A. & De Luca, M. (2002) Fossili vegetali in depositi vulcanici delle isole Eolie e di Linosa. Quaderno del Centro Studi e Ricerche di Storia e Problemi Eoliani, 42 pp.Google Scholar
Martini, M., Capaccioni, B., Giannini, L., Cellini Legittimo, P. & Piccardi, G. (1988) Past and present influence of volcanic systems on the surface environments: Vulcano and Lipari (Aeolian Islands, Italy). Bollettino Gruppo Nazionale di Volcanologia, 4, 383391.Google Scholar
Miller, W., Alexander, R., Chapman, N., McKinley, I. & Smellie, J. (1994) Natural Analogue Studies in the Geological Disposal of Radioactive Wastes. Elsevier, 395 p.Google Scholar
Nesbitt, H.W. & Markovics, G. (1997) Weathering of granodiorite crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61, 16531670.CrossRefGoogle Scholar
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motion inferred from major element chemistry of lutites. Nature, 299, 715717.Google Scholar
Nicaise, D., De Putter, Th., André, L., Jedwab, J. & Dupuis, Ch. (1996) Néoformation de phosphates nanométriques de terres rares en altération acide de basse temperature: implications pour le piégeage des terres rares, de Puranium et du thorium. Comptes-Rendus de I'Académie des Sciences de Paris (série IIa), 323,1, 13-120.Google Scholar
Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. Pp. 37-55 in: Acid Sulphate Weatherin. (J.A. Kittrick, D.S. Fanning and L.R. Hossner, editors). SSSA Special Publication 10. Soil Science Society of America, Madison, Wisconsin.Google Scholar
Pichler, H. (1980) The island of Lipari. Rendiconti Società Italiana di Mineralogia e Petrologia, 36, 415440.Google Scholar
Raymahashay, B.C. (1968) A geochemical study of rock alteration by hot springs in the Paint Pot Hill area, Yellowstone Park. Geochimica et Cosmochimica Acta, 32, 499522.Google Scholar
Schmitt, J.-M. (1999) Weathering, rainwater and atmosphere chemistry: example and modeling of granite weathering in present conditions, in a CO2-rich, and in an anoxic paleoatmosphere. Pp. 21–41 in: Palaeoweathering, Palaeosurface and Related Continental Deposit. (M. Thiry and R. Simon-Coincon, editors). Special Publication of the International Association of Sedimentologists.Google Scholar
Stumm, W. & Morgan, J.J. (1996) Aquatic Chemistry. Wiley, New York, 1022 pp.Google Scholar
Tardy, Y. & Novikoff, A. (1988) Activité de l'eau et déplacement des équilibres gibbsite-kaolinite dans les profiles latéritiques. Comptes-Rendus de I'Académie des Sciences de Paris, 306, 39–44.Google Scholar
Tardy, Y. & Roquin, C. (1992) Geochemistry and evolution of lateritic landscapes. Pp. 407-443 in: Weathering, Soils and Paleosoil. (I.P. Martini and W. Chesworth, editors). Developments in Earth Surface Processes, vol. 2, Elsevier, Amsterdam.Google Scholar
Tranne, C.A., Calanchi, N., Lucchi, F. & Rossi, P.L. (2000) Geological sketch map of Lipari, Eolian Islands, Ital. (scale 1:15,000).Google Scholar
Trolard, F., Bilong, P., Guillet, B. & Herbillon, A.J. (1990) Halloysite-kaolinite-gibbsite-boehmite: a thermodynamical modelisation of equilibria as function of water and dissolved silica activities. Chemical Geology, 84, 294297.Google Scholar
Van Breemen, N. (1982) Genesis, morphology and classification of acid sulfate soils in coastal plains. Pp. 95-108 in: Acid Sulfate Weatherin. (J.A. Kittrick, D.S. Fanning and L.R. Hossner, editors). SSSA Special Publication 10. Soil Science Society of America, Madison, Wisconsin.Google Scholar