Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T21:07:15.231Z Has data issue: false hasContentIssue false

Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions

Published online by Cambridge University Press:  09 July 2018

A. Decarreau
Affiliation:
Laboratoire de Géochimie des Roches Sédimentaires, U.A.-C.N.R.S. no 723, Université Paris-Sud, F-91405 Orsay Cedex
D. Bonnin
Affiliation:
Laboratoire de Physique Quantique, U.A.-C.N.R.S. no 421, E.S.P.C.I., 10 rue Vauquelin, F-75231 Paris Cedex 05, France

Abstract

Syntheses of ferric smectites were performed at low temperature (75° C by aging coprecipitated gels of silica and Fe2+-sulphate under initially reducing then oxidizing conditions. Under strictly reducing conditions only nuclei of a trioctahedral ferrous stevensite were observed and crystal growth did not take place. When a spontaneous oxidization, in contact with air, was effected, the ferrous smectite nuclei transformed rapidly into a ferric, nontronite-like, smectite. Crystallogenesis of the ferric smectite was studied by XRD, IR, DTA, Mössbauer and EPR spectroscopies. The end-synthesis smectite contained only Fe3+ ions, all located in the octahedral sheet. This clay was mixed with a cryptocrystalline iron oxide phase containing one-third of the iron atoms and undetectable by XRD.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, B.R. & Vincent, E.J. (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins. Clays Clay Miner. 26, 263272.Google Scholar
Badaut, D., Besson, G., Decarreau, A. & Rautureau, M. (1985) Occurrence of a ferrous, trioctahedral smectite in Recent sediments of Atlantis II Deep, Red. Sea. Clay Miner. 20, 389404.Google Scholar
Bancroft, G.M. (1973) Mössbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists. McGraw Hill, New York.Google Scholar
Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. & Drits, U.A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterisation of nontronites. J. Appl. Cryst. 16, 374383.Google Scholar
Bischoff, J.L. (1972) A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner. 20, 217223.CrossRefGoogle Scholar
Bonnin, D. (1981) Propridtds magnédtiques lideés aux ddsordres bidimentionnels dans un silicate lamellaire ferrique: la nontronite. Etude par spectrométrie Mössbauer, Résonnances magnédtiques, magnétisme et EXAFS. thése, Paris, 82 pp.Google Scholar
Bonnin, D., Muller, S. & Calas, G. (1982) Le fer dans les kaolins. Etude par spectrométries RPE, Mössbauer, EXAFS. Bull. Mineral. 105, 467475.Google Scholar
Bonnin, D., Calas, G., Suquet, H. & Pezerat, H. (1985) Sites occupancy of Fe3+ in Garfield nontronite. A spectroscopic study. Phys. Chem. Miner. 12, 5564.CrossRefGoogle Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Bruce, L.A., Sanders, J.V. & Turney, T.W. (1986) Hydrothermal synthesis and characterization of cobalt clays. Clays Clay Miner. 34, 2536.Google Scholar
Caillère, S., Henin, S. & Esquevin, J. (1953) Synthèses à basse température de phyllites ferrifères. C.R. Acad. Sc. Paris 239, 15351537.Google Scholar
Caillère, S., Henin, S. & Esquevin, J. (1955) Synthèses á basse température de quelques minéraux ferrifères (silicates et oxydes). Bull. Soc. Fr. Miner. Crist. 79, 408421.Google Scholar
Caillère, S., Henrn, S. & Esquevln, J. (1957) Synthéses des minéraux argileux. Bull. Gr. Fr. des Argiles 9, 6776.Google Scholar
Caillère, S. & Henin, S. (1952) Vues d'ensemble sur le problème de la synthèse des minéraux argileux á basse température. Colloque CNRS no 105: ‘Gendée et Synthése des Argiles', 3141.Google Scholar
Chukrov, F.V., Zvyagin, B.B., Drits, V.A., Gorshkov, A.I., Ermilova, L.P., Golio, E.A. & Rundnitskaya, E.S. (1979a) The ferric analogue of pyrophyllite and related phases. Proe. Int. Clay Conference, Oxford, 5564.Google Scholar
Chukrov, F.V., Zvyagin, B.B., Drits, V.A., Gorshkov, A.I., Ermilova, L.P. Golio, E.A. & Rundnitskaya, E.S. (1979b) Über ferri pyrophyllit. Chem. Erde 38, 324330.Google Scholar
Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy. Atomic Energy Review 18, 73124.Google Scholar
Coey, J.M.D., Chukrov, F.V. & Zvyagin, B.B. (1984) Cation distribution Mössbauer spectra and magnetic properties of ferripyrophyllite. Clays Clay Miner. 32, 198204.Google Scholar
Cole, T.G. (1983) Oxygen isotope geothermometry and origin of smectites in the Atlantis II Deep, Red Sea. Earth Planet. Sci. Lett. 66, 166176.CrossRefGoogle Scholar
Cole, T.G. & Shaw, H.F. (1983) The nature and origin of authigenic smectites in some Recent marine sediments. Clay Miner. 18, 239252.Google Scholar
Corliss, J.B., Lyle, M., Dymond, J. & Crane, K. (1978) The chemistry of hydrothermal mounds near Galapagos rift. Earth Planet. Sci. Lett. 40, 1224.Google Scholar
Decarreau, A. (1980) Cristallogenèse expérimentale des smectites magnésiennes: hectorite, stévensite Bull. Miner. 103,579590.Google Scholar
Decarreau, A. (1981) Cristallogenèse à basse température de smectites trioctaédriques par vieillissement de coprécipités silicoméalliques de formule (Si4-xAlx)M3Ol0,nH2O. C.R. Acad. Sci. Paris 292, 6164.Google Scholar
Decarreau, A. (1983) Etude expriméntale de la cristallogenèse des smectites. Mesures des coefficients de partage smectite trioctaédrique/solution aqueuse pour les métaux M 2+ de la première série de transition. Science Géol. 74,185 pp.Google Scholar
Decarreau, A. (1985) Partitioning of divalent transiton elements between octahedral sheets of trioctahedral smectites and water. Geoehim. Cosmoehim. Acta 49, 15371544.Google Scholar
Decarreau, A. (1986) Local order in synthetic Ni—Co—Zn stevensites and saponites. Clays Clay Miner. (in press).Google Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and Xray diffraction. Clay Miner. 12, 181194.Google Scholar
Ewell, R.H. & Insley, P.R. (1935) Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite. J. Res. Nat. Bur. Standards 15, 173186.CrossRefGoogle Scholar
Farmer, V.C., Russell, J.D., McHardy, W.J., Newman, A.C.D., Ahlrichs, J.L. & Rimsaite, J.V.H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineral. Mag. 38, 121137.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mössbauer and I.R. spectroscopy study of the structure of nontronite. Clays Clay Miner. 24, 5359.Google Scholar
Hamilton, G. & Furtwangler, W. (1951) Synthese yon Nontronit. Tsehermaks Mineral. Petrogr. Mitt. 3F.Google Scholar
Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chem. Geol. 10, 3139.Google Scholar
Harder, H. (1974) Illite mineral synthesis at surface temperatures. Chem. Geol. 14, 241253.CrossRefGoogle Scholar
Harder, H. (1976) Nontronite synthesis at low temperature. Chem. Geol. 18, 169180.CrossRefGoogle Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26, 6572.Google Scholar
Herbillon, A.J. & Tran Vin An, J. (1969) Heterogeneity in silicon-iron mixed hydroxides. J. Soil Sci. 20, 223235.CrossRefGoogle Scholar
Herpin, A. (1968) Théorie du Magnétisme. P.U.F., Paris.Google Scholar
Hein, J.R., Yen, H.W. & Alexander, E. (1979) Origin of iron rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clays Clay Miner. 27, 185194.CrossRefGoogle Scholar
Hoffert, M., Perseil, A., Hekinian, R., Choukroune, P., Needham, H.D., Francheteau, J. & Le Pinchon, X. (1978) Hydrothermal deposits sampled by diving saucer in transform fault “A” near 37°N on the mid-Atlantic ridge, FAMOUS area. Oeeanologica Acta 1, 7386.Google Scholar
Hoffert, M. (1980) Les argiles rouges des grands fonds dans le Pacifique centreest. Authigenèse, transport, diagenèse. Sci. Géol. 61,231 pp.Google Scholar
Hogg, C.S., Malden, P.J. & Meads, R.E. (1975) Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect. Mineral. Mag. 40, 8996.Google Scholar
Isphording, W.C. (1975) Primary nontronite from Venezuelan Guyana. Am. Miner. 60, 840848.Google Scholar
Janot, C., Gilbert, H. & Tobias, C. (1973) Caractérisation de kaolinites ferriféres par spectrométrie Mössbauer. Bull. Soc. Fr. Miner. Crist. 96, 281291.Google Scholar
Johnson, C.E. (1969) Antiferromagnetism of αFeOOH: a Mössbauer effect study. J. Phys. 2C, 19962002.Google Scholar
Kundig, W. & Bömmel, H. (1966) Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys. Rev. 142, 327333.CrossRefGoogle Scholar
Mackenzie, R.C. (1957) The Differential Thermal Investigations of Clays. Mineralogical Society, London.Google Scholar
Malden, P.J. & Meads, R.E. (1967) Substitution of iron in kaolinite. Nature 215, 844846.Google Scholar
McMurty, G.H., Wang, C.H. & Yea, H.W. (1983) Chemical and isotopic investigations into origin of clay minerals from the Galapagos hydrothermal mounds field. Geochim. Cosmochim. Acta 47, 475489.Google Scholar
Moorby, S.A. & Cronan, D.S. (1983) The geochemistry of hydrothermal and pelagic sediments from Galapagos hydrothermal mounds fields. DSDP Leg 70. Mineral Mag. 47, 291300.Google Scholar
Morup, S., Topsoe, H. & Lipka, J. (1976) Modified theory for Mössbauer spectra of superparamagnetic particles: application to Fe3O4 . J. Phys. C6,287290.Google Scholar
Murad, E. (1979) Mössbauer and Xray data on β-FeOOH (akaganeite). Clay Miner. 14, 273283.Google Scholar
Murad, E. (1980) The characterization of geothite by Mössbauer spectroscopy. Am. Miner. 67, 10071011.Google Scholar
Murad, E. & Schwertmann, U. (1980) The Mössbauer spectrum of ferrihydrite and its relation to those of other iron oxides. Am. Miner. 65, 10441049.Google Scholar
Murad, E. & Schwertmann, U. (1984) The influence of crystallinity on the Mössbauer spectrum of lepidocrocite. Mineral. Mag. 48, 507511.Google Scholar
Mulller, G. & Förstner, U. (1973) Recent iron ore formation in Lake Malawi, Africa. Mineral. Deposita. 8, 278290.Google Scholar
Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats mediterranéens et tropicaux à saisons contrastées. Mém. Serv. Carte Géol. Als. Lorr. 30, 210 pp.Google Scholar
Pedro, G., Carmouze, J.P. & Velde, B. (1978) Peloidal nontronite formation in Recent sediments of Lake Tchad. Chem. Geol. 23, 139149.Google Scholar
Petruk, W.G., Farrell, D.M., Laufer, E.E., Tremblay, R.J. & Manning, P.G. (1977) Nontronite and ferrigenous opal from the Peace River iron deposit in Alberta, Canada. Canadian Miner. 15, 1421.Google Scholar
Pons, C.H., Tchoubar, C. & Tchoubar, D. (1980) Organisation des molécules d'eau à la surface des feuiUets dans un gel de montmorillonite Na. Bull. Soc. Fr. Miner. 103, 452456.Google Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites. Clays Clay Miner. 25, 94101.Google Scholar
Siffert, B. (1962) Quelques réactions de la silice en solution: la formation des argiles. Mém. Serv. Carte Géol. Als. Lorr. 21,86 pp.Google Scholar
Wickmann, H.H., Klein, M.P. & Shirley, D.A. (1966) Paramagnetic hyperfine structure and relaxation effects in Mössbauer spectra: Fe57 in ferrichrome A. Physical Review 152, 345357.Google Scholar