Skip to main content Accessibility help
×
Home

Tetrahedral charge and Fe content in dioctahedral smectites

  • S. Kaufhold (a1), J.W. Stucki (a2), N. Finck (a3), R. Steininger (a4), A. Zimina (a5), R. Dohrmann (a1) (a6), K. Ufer (a1), M. Pentrák (a2) and L. Pentráková (a2)...

Abstract

Natural aluminosilicates can contain Fe in tetrahedral or octahedral coordination. Amongst smectites, tetrahedral iron is known to occur in Fe-rich nontronites but few indications exist for the presence of tetrahedral Fe in smectites of the montmorillonite–beidellite series. A set of 38 different bentonites showed a correlation of tetrahedral charge and Fe content in their smectites. All materials with large tetrahedral charge were rich in Fe. This could be explained by a general tendency of Fe to enter the tetrahedral sheet. To investigate this correlation, nine materials were selected and investigated by Mössbauer, UV-Vis, Fe K pre-edge and EXAFS spectroscopy with respect to tetrahedral Fe (Fe[IV]). The latter two methods were at the detection limit but Mössbauer and UV-Vis spectroscopy provided consistent results indicating the significance of both methods in spite of some scatter caused by the overall small amount of tetrahedral Fe. The results indicate the absence of any relation between Fe content and tetrahedral Fe. Tetrahedral Fe can be present in Fe-poor smectites and absent in the case of Fe-rich materials. This means that Fe-rich montmorillonites have a larger tetrahedral charge which is not caused by Fe[IV] but by Al[IV]. A possible explanation for this indirect relation is based on: the coordination of Al3+ in the weathering/smectite-forming solutions determines the coordination in the precipitates; and the Al[IV/VI] ratio increases with increasing pH. The correlation could thus be explained if the pH of weathering solutions generally was higher in Fe-rich parent smectite rocks than in more acidic smectite parent rocks. The relation between tetrahedral charge and Fe content can probably be explained by different geochemical contexts throughout the formation of smectites which affect the coordination of dissolved Al.

Copyright

Corresponding author

References

Hide All
Ankudinov, A.L., Ravel, B., Rher 11 & Conradson, S.D. (1998) Real space multiple scattering calculation of XANES. Physical Review B, 58, 75657576.
Badraoui, M. & Bloom, P.R. (1990) Iron-rich high-charge beidellite in Vertisols and Mollisols of the High Chaouia region of Morocco. Soil Science Society of America Journal, 54, 267274.
Bishop, J.L., Murad, E., Madejova, I., Komadel, P., Wagner, U. & Scheinost, A. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. 11th International Clay Conference, June, 1997, Ottawa, 413-419.
Bujdak, I., Janek, M., Madejova, I. & Komadel, P. (2001) Methylene blue interactions with reduced-charge smectites. Clays and Clay Minerals, 49, 244254.
Decarreau, A. & Petit, S. (2014) Fe3+/Al3+ partitioning between tetrahedral and octahedral sites in dioctahedral smectites. Clay Minerals, 49, 657665.
Dohrmann, R. & Kaufhold, S. (2009) Three new, quick CEC methods for determining the amounts of exchangeable calcium cations in calcareous clays. Clays and Clay Minerals, 57, 338352.
Dohrmann, R. & Kaufhold, S. (2010) Determination of exchangeable calcium of calcareous and gypsiferous bentonites. Clays and Clay Minerals, 58, 7988.
Finck, N., Schlegel, M.L. & Bauer, A. (2015) Structural iron in dioctahedral and trioctahedral smectites: a polarized XAS study. Physics and Chemistry of Minerals, 42, 847859.
Gates, W.P., Slade, P.G., Lanson, B. & Manceau, A. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223239.
Gislason, S.R., Arnorsson, S. & Armannsson, H. (1996) Chemical weathering of basalt in southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837907.
Heuser, M., Andrieux, P., Petit, S. & Stanjek, H. (2013) Iron-bearing smectites: A revised relationship between structural Fe, b cell edge lengths and refractive indices. Clay Minerals, 48, 97103.
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für anorganische Chemie, 262, 9599.
Kaufhold, S. & Dohrmann, R. (2003) Beyond the Methylene Blue method: determination of the smectite content using the Cu-trien method. Zeitschrift für Angewandte Geologie, 2, 1318.
Kaufhold, S. & Dohrmann, R. (2008) Detachment of colloidal particles from bentonites in water. Applied Clay Science, 39, 5059.
Kaufhold, S. & Dohrmann, R. (2013) The variable charge of dioctahedral clay minerals. Journal of Colloid and Interface Science, 390, 225233.
Kaufhold, S., Dohrmann, R., Koch, D. & Houben, G. (2008) The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56, 338343.
Kaufhold, S., Dohrmann, R., Stucki, J. & Anastácio, A.S. (2011a) Layer charge density of montmorillonite — closing the gap between structural formula method and alkyl ammonium method. Clays and Clay Minerals, 59, 200211.
Kaufhold, S., Dohrmann, R., Ufer, K., Kleeberg, R. & Stanjek, H. (2011b) Cu trien exchange to improve the analytical understanding of smectites. Clay Minerals, 46, 411420.
Kaufhold, S., Hein, M., Dohrmann, R. & Ufer, K. (2012) Quantification of the mineralogical composition of clays using FTIR spectroscopy. Journal ofVibrational Spectroscopy, 59, 2939.
de Kimpe, C., Gastuche, M.C. & Brindley, G.W. (1961) ionic coordination in alumino-silicic gels in relation to clay mineral formation. American Mineralogist, 46, 13701381.
Köster, H.M. (1977) Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücks ichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten sowie die Dars tellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Minerals, 12, 4554.
Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D. & Stucki, J.W. (2000a) Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133152.
Manceau, A., Drits, V.A., Lanson, B., Chateigner, D., Wu, J., Huo, D., Gates, W.P. & Stucki, J.W. (2000b) Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite. American Mineralogist, 85, 153172.
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of Copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.
Merola, R.B. & McGuire, M.M. (2009) Crystallographic site distribution and redox activity of Fe in nontronites determined by optical spectroscopy. Clays and Clay Minerals, 57, 771778.
Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les altérations et les sols des sédiments méditerrannéens et tropicaux à saisons contrastées. Mémoire de la Service Carte Géologique Alsace Lorraine, 30, 212.
Ravel, B. & Newville, M. (2005) Athena, artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.
Ryan, P.C. & Huertas, F.J. (2009) The temporal evolution of pedogenic Fe-smectite to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil chronose-quence. Geoderma, 151, 115.
Tsipursky, S.I. & Drits Y (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177193.
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R. & Bergmann, J. (2004) Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift für Kristallographie, 219, 519527.
Vantelon, D., Montarges-Pelletier, E., Michot, L.J., Briois, Y., Pelletier, M. & Thomas, F. (2003) Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study. Physics and Chemistry of Minerals, 30, 4453.
Violet, C.E. & Pipkorn, D.N. (1971) Mössbauer Line Positions and Hyperfine Interactions in α Iron. Journal of Applied Physics, 42, 4339–433.
Waychunas, G.A., Apted, M.J. & Brown, G.E. Jr. (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: near-edge structure. Physics and Chemistry of Minerals, 10, 19.
Weaver, C.E. & Pollard, L.D. (1975) The Chemistry of Clay Minerals. Developments in Sedimentology, 15, Elsevier, Amsterdam, 213 pp.
Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O. & Solomon, E.I. (1997) A multiplet analysis of Fe K-Edge 1 s f 3d pre-edge features of iron complexes. Journal of the American Chemical Society, 119, 62976314.
Wilke, M., Farges, F., Petit, P.-E., Brown, G.E. Jr. & Martin, F. (2001) Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. American Mineralogist, 86, 714730.
Wu, J., Xia, Y. & Stucki, J.W. (2004) Color temperature indicator. U.S. Patent No. 6,712,996.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed