Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-15T21:49:48.917Z Has data issue: false hasContentIssue false

Mica-Type Layer Silicates with Alkylammonium Ions

Published online by Cambridge University Press:  01 January 2024

Armin Weiss*
Affiliation:
Chemisches Institut der Universität Heidelberg, Germany

Abstract

More than 8000 different derivatives of mica-type layer silicates (muscovite, biotite, illite, vermiculite, beidellite, montmorillonite) with alkylammonium ions and different organic molecules as swelling liquids were prepared and characterized analytically by X-ray and chemical methods. The following results have been discussed in some detail.

Layer-lattice compounds are formed in simple stoichiometric relations. In n-alkyl-ammonium compounds, for instance, the sum (n-Cx,H2x+1NH3++n-CxH2x+1Y) per (Si, Al)4O10 is equal to 2.0 (Y = OH-, Cl-, Br-, NH2-, COH-, CONH2-, CN-).

The layer distance of the pure n-alkylammonium derivatives enables one to determine the charge density in the silicate layers. But in soils the ability of humic acids to undergo two-dimensional intracrystalline swelling and to react with alkylammonium ions must also be considered.

The properties of n-alkylammonium layer silicates are similar to those of alkyl-ammonium-uranium micas and of swelling vanadates (e.g. hewettite and pascoite). The swelling properties of alkyl-(α, ω)-diammonium ions are markedly influenced by the opportunities for hydrogen bonding. Mica-type layer silicates may show catalytic properties like protease or oxidase with ammonium ions, which are of general interest.

Type
Symposium on Clay-Organic Complexes
Copyright
Copyright © Clay Minerals Society 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrer, R M, MacLeod, D M. The activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Trans. Faraday Soc. 1955 51 1290 10.1039/tf9555101290CrossRefGoogle Scholar
Barrer, R M, Reay, J S S. Sorption and intercalation by methylammonium bentonites. Trans. Faraday Soc. 1957 54 691Google Scholar
Cowan, C T, White, D. The mechanism of exchange reactions occurring between sodium montmorillonite and various N-primary aliphatic amine salts. Trans. Faraday Soc. 1958 54 691 10.1039/tf9585400691CrossRefGoogle Scholar
Emerson, W W. Complex formation between montmorillonite and high polymers. Nature 1955 176 461 10.1038/176461a0CrossRefGoogle Scholar
Ensminger, L E, Gieseking, J E. The adsorption of proteins by montmorillonitic clays. Soil Science 1939 48 467473 10.1097/00010694-193912000-00003CrossRefGoogle Scholar
Ensminger, L E, Gieseking, J E. The absorption of proteins by montmorillonitic clays and its effect on base-exchange capacity. Soil Science 1941 51 125132 10.1097/00010694-194102000-00003CrossRefGoogle Scholar
Ensminger, L E, Gieseking, J E. Resistance of clay-absorbed proteins to proteolytic hydrolysis. Soil Science 1942 53 205 10.1097/00010694-194203000-00005CrossRefGoogle Scholar
Erbring, H, Lehmann, H. Austauschreaktionen an Na-Bentoniten mit grosvolumigen organischen Kolloidionen. Kolloid-Z. 1944 107 201205 10.1007/BF01501496CrossRefGoogle Scholar
Grim, R E, Allaway, W H, Cuthbert, F L. Reaction of different clay minerals with some organic cations. J. Amer. Ceram. Soc. 1947 30 137142 10.1111/j.1151-2916.1947.tb19549.xCrossRefGoogle Scholar
Hendricks, S B. Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals’ forces. J. Phys. Chem. 1941 45 6581 10.1021/j150406a006CrossRefGoogle Scholar
Jordan, J W. Alteration of the properties of bentonite by reaction with amines. Min. Mag. 1949 28 598605Google Scholar
Jordan, J W. Organophilic bentonites, I, Swelling in organic liquids. J. Phys. and Colloid. Chem. 1949 53 294306 10.1021/j150467a009CrossRefGoogle Scholar
Jordan, J W, Hook, B J, Finlayson, C M. Organophilic bentonites II, Organic liquid gels. J. Phys. Chem. 1950 54 1196 10.1021/j150482a012CrossRefGoogle Scholar
Jordan, J W, Williams, F J. Organophilic bentonites, III. Inherent properties. J. Phys. Chem. 1954 137 40Google Scholar
Kinter, E, Diamond, S. Characterization of montmorillonite saturated with short-chain amine cations, 2. Interlayer surface coverage by the amine cations. Clays and Clay Minerals 1963Google Scholar
Müller, O P, Jordan, J W, Brancato, J J. Bentonite flatting and gelling agents. Official Digest Federation Paint and Varnish Production Clubs 1949 451Google Scholar
Rowland, R A, Weiss, J E. Bentonite—methylaminè complexes. Clays and Clay Minerals 1963Google Scholar
Smith, C R. Base-exchange reactions of bentonite and salts of organic bases. J. Amer. Chem. Soc. 1934 56 1561 10.1021/ja01322a032CrossRefGoogle Scholar
Talibudeen, O. Interlamellar adsorption of protein monolayers on pure mont-morillonoid clays. Nature 1950 166 236 10.1038/166236a0CrossRefGoogle ScholarPubMed
Weiss, A. Die innerkristalline Quellung als allgemeines Modell für Quellungsvorgänge. Chem. Berichte 1958 91 487 10.1002/cber.19580910305CrossRefGoogle Scholar
Weiss, A. Über das Vorkommen eines innorkristallin quellungsfähigen Eisensilikates in Lungen Silikosekranker. Hoppe-Seyler Z. Physiol. Chem. 1961 324 153 10.1515/bchm2.1961.324.1.153CrossRefGoogle Scholar
Weiss, A, Hartl, K, Hofmann, U. Zur Kenntnis von organophilen Uranglimmern. Z. Naturforschg. 1957 12 351 10.1515/znb-1957-0601CrossRefGoogle Scholar
Weiss, A, Hartl, K, Michel, E. Zur Konstitution der Vanadinminerale Hewettit und Meta-Hewettit. Z. Naturforschg. 1961 16 842 10.1515/znb-1961-1219CrossRefGoogle Scholar
Weiss, A, Hofmann, U. Batavit. Z. Naturforschg. 1951 6 405409 10.1515/znb-1951-0801CrossRefGoogle Scholar
Weiss, A, Hofmann, U. Reaktionen im Innern des Schichtgitters von Uranglimmern. Z. Naturforschg. 1952 7 362 10.1515/znb-1952-0609CrossRefGoogle Scholar
Weiss, A, Kantner, I. Aber ein einfaches Verfahren zur Bestimmung der Somehtladung von quellungsfähigen Silikaten. Z. Naturforschg. 1960 16 804 10.1515/znb-1960-1211CrossRefGoogle Scholar
Weiss, A, Kantner, I, Eckel, M, Hofmann, G, Michel, E. Zur Kenntnis des glimmerähnlichen Minerals in Fremdstäuben aus Silikoselungen. Beitrage Silikoseforschg., Sonderband Grundfragen d. Silikoseforschg. 1960 3 45Google Scholar
Weiss, A, Koch, G. in G. Koch, Zur Kenntnis von Montmorillonit-Mineralen 1961Google Scholar
Weiss, A, Mehler, A, Hofmann, U. Zur Kenntnis von organophilem Vermikulit. Z. Naturforschg. 1956 11 431 10.1515/znb-1956-0802CrossRefGoogle Scholar
Weiss, A, Mehler, A, Hofmann, U. Kationenaustausch und innerkristallines Quellungsvermögen bei den Mineralen der Glimmergruppe. Z. Naturforschg. 1956 11 435 10.1515/znb-1956-0803CrossRefGoogle Scholar
Weiss, A, Michel, E. Über Kationenaustausch und innerkristallines Quellungsvermögen bei kettenförmigen Polyphosphaten. Z. Anorg. Allg. Chem. 1958 296 313 10.1002/zaac.19582960132CrossRefGoogle Scholar
Weiss, A, Michel, E. Über eine eindimensionale innerkristalline Quellung bei Mono-n-alkyl-ammonium Polyphosphaten. Z. Anorg. Allg. Chem. 1960 306 277 10.1002/zaac.19603060507CrossRefGoogle Scholar
Weiss, A, Michel, E, Fodnes, T. Kationenaustausch und innerkristallines Quellungsvermögen von kettenförmigen Poly vanadaten (Me+(VO3)n. Naturwissensch. 1962 49 11 10.1007/BF00632829CrossRefGoogle Scholar
Weiss, A, Michel, E, Weiss, Al. Einfluss von Wasserstoffbrüekenbindungen auf innerkristalline Quellungsvorgänge. Hydrogen Bonding 1959 London: Pergamon Press 495 10.1016/B978-0-08-009140-2.50057-9CrossRefGoogle Scholar
Weiss, A, Michel, E, Weiss, Al. Kationenaustausch und eindimensionales innerkristallines Quellungsvermögen von Polyvanadaten mit Schichtstruktur. Angew. Chem. 1961 73 707 10.1002/ange.19610732105CrossRefGoogle Scholar
Weiss, A, Taborsky, F, Hartl, K, Tröger, E. Zur Kenntnis des Uranminerals Trögerit. Z. Naturforschg. 1957 12 356 10.1515/znb-1957-0602CrossRefGoogle Scholar
Weiss, A, Thamerus, G. Zur Kenntnis von Al3+- und Si4+-Glimmern. Naturwissensch. 1961 48 70 10.1007/BF00639461CrossRefGoogle Scholar
Weiss, A, Weiss, Al. Ditinate, innerkristallin quellungsfähige Verbindungen. Angew. Chem. 1960 72 413 10.1002/ange.19600721204CrossRefGoogle Scholar