Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-18T03:42:02.734Z Has data issue: false hasContentIssue false

High-Resolution Imaging of Ordered Mixed-Layer Clays

Published online by Cambridge University Press:  02 April 2024

Robert E. Klimentidis
Affiliation:
Exxon Production Research Company, P.O. Box 2189, Houston, Texas 77001
Ian D. R. MacKinnon*
Affiliation:
Microbeam Inc., P.O. Box 590267, Houston, Texas 77259
*
1Present address: Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131.

Abstract

High-resolution transmission electron microscopy (HRTEM) has been used to examine illite/smectite from the Mancos Shale; rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa Formation. Thin specimens were prepared by ion milling, ultramicrotome sectioning, and/or grain dispersal on a holey carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method for HRTEM imaging of expanded smectite (d (001) = 16 Å) which could then be distinguished from unexpanded illite (d (001) = 10 Å). Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed a 26-Å periodicity. These data support X-ray powder diffraction (XRD) studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10-Å and 14-Å basal spacings corresponding to collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite layers were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to more than five layers. For all illite, smectite, and illite/ smectite particles examined, crystallite sizes of about 20 Å in the basal dimension were not observed.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J. H. and Peacor, D. R., 1985 Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments Clays & Clay Minerals 33 228236.CrossRefGoogle Scholar
Ahn, J. H. and Peacor, D. R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Clays & Clay Minerals 34 165179.Google Scholar
Amouric, M., Mercuriot, G. and Baronnet, A., 1981 On computed and observed HRTEM images of perfect mica polytypes Bull. Mineral. 104 298313.Google Scholar
Barber, D. J., 1970 Thin foils of non-metals made for electron microscopy by sputter etching J. Mater. Sci. 5 18.CrossRefGoogle Scholar
Bethke, C. M. and Altaner, S. P., 1986 A layer-by-layer mechanism of smectite illitization and its application to a new rate law Clays & Clay Minerals 34 136145.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society Monograph No. 5, Mineralogical Society.CrossRefGoogle Scholar
Brown, J. L. and Jackson, M.L., 1973 Chlorite examination by ultramicrotomy and high resolution electron microscopy Clays & Clay Minerals 21 17.CrossRefGoogle Scholar
Eberhart, J. P. and Fripiat, J. J., 1981 High resolution electron microscopy applied to clay minerals Advanced Techniques for Clay Mineral Analysis Amsterdam Elsevier 3150.Google Scholar
Eberhart, S. P. and Triki, R., 1972 Description d’une technique permetant d’obtenir des coupes minces de minéraux argileux par ultramicrotomie. Application à l’étude des minéraux argileux interstratifiés J. Microscopie 15 111120.Google Scholar
Eberl, D. D., 1978 The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations Geochim. Cosmochim. Acta 42 17.CrossRefGoogle Scholar
Eberl, D. D. and Hower, J., 1976 Kinetics of illite formation Geol. Soc. Amer. Bull. 87 13271330.2.0.CO;2>CrossRefGoogle Scholar
Eggleton, R. A., 1984 Formation of iddingsite rims on olivine: a transmission electron microscope study Clays & Clay Minerals 32 111.CrossRefGoogle Scholar
Eggleton, R. A. and Buseck, P. R., 1980 High resolution electron microscopy of feldspar weathering Clays & Clay Minerals 28 173178.CrossRefGoogle Scholar
Garrels, R. M., 1984 Montmorillonite/illite stability diagrams Clays & Clay Minerals 32 161166.CrossRefGoogle Scholar
Hower, J. and Longstaffe, F. J., 1981 X-ray identification of mixed-layer clay minerals Clays and the Resource Geologist 3959.Google Scholar
Hower, J. and Longstaffe, F. J., 1981 Shale diagenesis Clays and the Resource Geologist Calgary, Alberta Mineralogical Association of Canada Short Course Notes 6080.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Hower, J. and Mowatt, T. C., 1966 The mineralogy of illites and mixed-layer illite/montmorillonite Amer. Mineral. 51 825854.Google Scholar
Iijima, S. and Buseck, P. R., 1978 Experimental study of disordered mica structures by high-resolution electron microscopy Acta Crystallogr. A34 709719.CrossRefGoogle Scholar
Kohyama, N., Fukushima, K., Fukami, A., van Olphen, H. and Veniate, F., 1982 In-terlayer hydrates and complexes of clay minerals observed by electron microscopy using an environmental cell Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elsevier 373384.Google Scholar
Lagaly, G., Weiss, A. and Heller, L., 1969 Determination of the layer charge in mica-type layer silicates Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 6180.Google Scholar
Lee, J. H., Ahn, J. H. and Peacor, D. R., 1985 Textures in layered silicates: progressive changes through diagenesis and low temperature metamorphism J. Sed. Petrol. 55 532590.Google Scholar
Mackinnon, I. D. R. and Buseck, P. R., 1979 New phyllosilicate types in a carbonaceous chondrite matrix Nature 280 219220.CrossRefGoogle Scholar
McKee, T. R., Brown, J. L., Dixon, J. B. and Weed, S. B., 1977 Preparation of specimens for electron microscopic examination Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 809841.Google Scholar
McKee, T. R. and Buseck, P. R., 1978 HRTEM observations of stacking and ordered interstratification in rectorite Proc. 9th Int. Cong. Electron Micros. 1 272273.Google Scholar
McKee, T. R., Dixon, J. B., Whitehouse, M. G., Harling, D. F. and Arceneaux, C. J., 1973 Study of TePuke halloysite by a high resolution electron microscope Proc. 31st Ann. Meet. Electron Microscopy Soc. Amer. Louisiana Baton Rouge 200201.Google Scholar
Miser, H. D. and Milton, C. (1964) Quartz, rectorite, and cookeite from the Jeffrey quarry near North Little Rock, Pulaski County, Arkansas: Arkansas Geolog. Commission Bull. 21, 29 pp.Google Scholar
Nadeau, P. H., Reynolds, R. C. Jr., 1981 Burial and contact metamorphism in the Mancos Shale Clays & Clay Minerals 29 249259.CrossRefGoogle Scholar
Nadeau, P. H., Tait, J. M., McHardy, W. J. and Wilson, M. J., 1984 Interstratified XRD characteristics of physical mixtures of elementary clay particles Clay Miner. 19 6776.CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interstratified clays as fundamental particles Science 225 923925.CrossRefGoogle ScholarPubMed
O’Keefe, M. A., Buseck, P. R. and Iijima, S., 1978 Computed crystal structure images for high resolution electron microscopy Nature 274 322324.CrossRefGoogle Scholar
Page, R. and Wenk, H. R., 1979 Phyllosilicate alteration of plagioclase studied by transmission electron microscopy Geology 7 393397.2.0.CO;2>CrossRefGoogle Scholar
Paulus, M., Dubon, A. and Etienne, J., 1975 Application of ion-thinning to the study of the structure of argillaceous rocks by transmission electron microscopy Clay Miner. 10 417426.Google Scholar
Phakey, P. P., Curtis, C. D. and Oertel, G., 1972 Transmission electron microscopy of fine-grained phyllosilicates in ultra-thin rock sections Clays & Clay Minerals 20 193197.CrossRefGoogle Scholar
Reynolds, R. C. Jr., 1967 Interstratification of clay systems: calculation of the total one-dimensional diffraction function Amer. Mineral. 52 661672.Google Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of inter-layering in mixed-layer illite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Roberson, H. E. and Lahann, R. W., 1981 Smectite to illite conversion rates: effects of solution chemistry Clays & Clay Minerals 29 129135.CrossRefGoogle Scholar
Ruehlicke, G. and Kohler, E. E., 1981 A simplified procedure for determining layer charge by the N-alkylammonium method Clay Miner. 16 305307.CrossRefGoogle Scholar
Spence, J. C. H., 1981 Experimental High-Resolution Electron Microscopy Oxford Clarendon Press.CrossRefGoogle Scholar
Spinnler, G. E., Self, P. G., Iijima, S. and Buseck, P. R., 1984 Stacking disorder in clinochlore chlorite Amer. Mineral. 69 252263.Google Scholar
Spurr, A. R., 1969 A low viscosity epoxy resin embedding medium for electron microscopy Ultrastructure Res. 26 3143.CrossRefGoogle ScholarPubMed
Srodon, J., 1980 Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays & Clay Minerals 28 401411.CrossRefGoogle Scholar
Srodon, J., 1981 X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite Clay Miner. 16 297304.CrossRefGoogle Scholar
Srodon, J., 1984 X-ray powder diffraction identification of illitic materials Clays & Clay Minerals 32 337349.CrossRefGoogle Scholar
Tchoubar, C., Rautureau, M., Clinard, C. and Ragot, J. P., 1973 Technique d’inclusion appliquée à l’étude des silicates lamellaires et fibreux J. Microscopie 18 147154.Google Scholar
Tessier, D., Pedro, G., van Olphen, H. and Veniale, F., 1982 Electron microscopy study of Na smectite fabric—role of layer charge, salt concentration and suction parameters Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elsevier 165176.Google Scholar
van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Other Non-Metallic Minerals Oxford Pergamon Press.Google Scholar
Veblen, D. R., 1983 Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite and kaolinite Amer. Mineral. 68 566580.Google Scholar
Yoshida, T., 1973 Elementary layers in the interstratified clay minerals as revealed by electron microscopy Clays & Clay Minerals 21 413420.CrossRefGoogle Scholar
Yoshida, T. and Suito, E., 1972 Interstratified layer structure of the organo-montmorillonites as revealed by electron microscopy J. Appl. Crystallogr. 5 119124.CrossRefGoogle Scholar