Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-30T18:29:49.736Z Has data issue: false hasContentIssue false

Nature of Structural Disorder in Natural Kaolinites: A New Model Based on Computer Simulation of Powder Diffraction Data and Electrostatic Energy Calculation

Published online by Cambridge University Press:  28 February 2024

G. Artioli
Affiliation:
Università di Milano, Dipartimento di Scienze della Terra, I-20133 Milano, Italy
M. Bellotto
Affiliation:
CISE tecnologie innovative, I-20119 Segrate, Italy
A. Gualtieri
Affiliation:
Università di Modena, Dipartimento di Scienze della Terra, I-41100 Modena, Italy
A. Pavese
Affiliation:
Università di Milano, Dipartimento di Scienze della Terra, I-20133 Milano, Italy

Abstract

A new model for the description of the structural disorder in natural kaolinite materials is proposed, based on the stacking of two 1:1 layers and their enantiomorphs, and encompassing previously proposed models. The layers, where randomly stacked along the c axis (using probabilistic functions nested in recursive algorithms), correctly describe the observed powder diffraction patterns of natural kaolinites with any density of structural faults. The proposed model was evaluated using electrostatic energy calculations against earlier models of disorder based on layer shift, layer rotation, statistical occupancy of the Al octahedra, or enantiomorphic layers. The present 4-layer model has a minimum of potential energy with respect to the previous models. As expected, the fully ordered triclinic structure of kaolinite possesses the absolute minimum of potential energy.

Information

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, J. M., 1983. Hydrogen atom positions in kaolinite by neutron profile refinement. Clays & Clay Miner. 31: 352356.CrossRefGoogle Scholar
Allegra, G., 1964. The calculation of the intensity of X-rays diffracted by monodimensionally disordered structures. Acta Crystallog. 17: 579586.CrossRefGoogle Scholar
Bailey, S. W., 1963. Polymorphism of the kaolin minerals. Am. Miner. 48: 11861209.Google Scholar
Bailey, S. W., 1980. Structures of layer silicates. In Crystal Structures of Clay Minerals and their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 1124.Google Scholar
Bertaut, F., 1952. L'energie electrostatique de reseaux ioniques. J. Phys. Radium 13: 499505.CrossRefGoogle Scholar
Bish, D. L., 1993. Rietveld refinement of the kaolinite structure at 1.5 K. Clays & Clay Miner. 41: 738744.CrossRefGoogle Scholar
Bish, D. L., and Von Dreele, R. B. 1989. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays & Clay Miner. 37: 289296.CrossRefGoogle Scholar
Bleam, W. F., 1993. Atomic theories of phyllosilicates: Quantum chemistry, statistical mechanics, electrostatic theory, and crystal chemistry. Rev. Geophys. 31: 5173.CrossRefGoogle Scholar
Bookin, A. S., Drits, V. A., Plançon, A., and Tchoubar, C. 1989. Stacking faults in kaolin-group minerals in the light of real structural features. Clays & Clay Miner. 37: 297307.CrossRefGoogle Scholar
Brindley, G. W., 1980. Order-disorder in clay mineral structures. In Crystal Structures of Clay Minerals and their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 125196.CrossRefGoogle Scholar
Brindley, G. W., Kao, C. C., Harrison, J. L., Lipsicas, M., and Raythatha, R. 1986. Relation between structural disorder and other characteristics of kaolinites and dickites. Clays & Clay Miner. 34: 239249.CrossRefGoogle Scholar
Brindley, G. W., and Robinson, K. 1946. Randomness in the structures of kaolinitic clay minerals. Trans. Faraday Soc. 42B: 198205.CrossRefGoogle Scholar
Catti, M., 1978. Electrostatic lattice energy in ionic crystals: Optimization of the convergence of Ewald series. Acta Crystallog. A34: 974979.CrossRefGoogle Scholar
Collins, D. R., and Catlow, C. R. A. 1991. Energy-minimized hydrogen-atom positions of kaolinite. Acta Crystallog. B47: 678682.CrossRefGoogle Scholar
Coulon, C., 1971. La genese du massif rhyolitique du Mont Traessu (Sardaigne Septentrionale): Evolution de son dynamisme volcanique. Boll. Soc. Geol. Ital. 90: 7390.Google Scholar
Cowley, J. M., 1976. Diffraction by crystals with planar faults. I. General theory. Acta Crystallog. A32: 8387.CrossRefGoogle Scholar
Drits, V. A., and Tchoubar, C. 1990. X-ray Diffraction by Disordered Lamellar Structures. Berlin: Springer-Verlag, 233303.CrossRefGoogle Scholar
Giese, R. F., 1982. Theoretical studies of the kaolin minerals: electrostatic calculations. Bull. Minéral. 105: 417424.CrossRefGoogle Scholar
Giese, R. F., 1991. Kaolin minerals: Structures and stabilities. Rev. Mineral. 19: 2966.Google Scholar
Hendricks, S., and Teller, E. 1942. X-ray interference in partially ordered layer lattices. J. Chem. Phys. 10: 147167.CrossRefGoogle Scholar
Hess, A.C., and Saunders, V. R. 1992. Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite. J. Phys. Chem. 96: 43674374.CrossRefGoogle Scholar
Kakinoki, J., and Komura, Y. 1965. Diffraction by a one dimensionally disordered crystal. I. The intensity equation. Acta Crystallog. 19: 137147.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. 1993. GSAS, General Structure Analysis System; Document LAUR 86–748, Los Alamos National Laboratory, New Mexico.Google Scholar
Michalski, E., 1988. The diffraction of X-rays by close-packed polytypic crystals containing single stacking faults. Acta Crystallog. A44: 640649.CrossRefGoogle Scholar
Newnham, R. E., 1961. A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals. Miner. Mag. 32: 683704.Google Scholar
Plançon, A., 1981. Diffraction by layer structures containing different kinds of layers and stacking faults. J. Appl. Crystallog. 14: 300304.CrossRefGoogle Scholar
Plançon, A., Giese, R. F., and Snyder, R. 1988. The Hinckley index for kaolinites. Clay Miner. 23: 249260.CrossRefGoogle Scholar
Plançon, A., Giese, R. F., Snyder, R., Drits, V. A., and Bookin, A. S. 1989. Stacking faults in the kaolin-group minerals: Defect structures of kaolinite. Clays & Clay Miner. 37: 203210.CrossRefGoogle Scholar
Plançon, A., and Tchoubar, C. 1975. Étude des fautes d'empilement dans les kaolinites partiellement désordonnées. I. Modèle d'empilement ne comportant que des fautes de translation. J. Appl. Crystallog. 8: 582588.CrossRefGoogle Scholar
Plançon, A., and Tchoubar, C. 1976. Étude des fautes d'empilement dans les kaolinites partiellement désordonnées. II. Modèle d'empilement ne comportant que des fautes par rotation. J. Appl. Crystallog. 9: 279285.CrossRefGoogle Scholar
Plançon, A., and Tchoubar, C. 1977a. Determination of structural defects in phyllosilicates by X-ray powder diffraction—I. Principle of calculation of the diffraction phenomenon. Clays & Clay Miner. 25: 430435.CrossRefGoogle Scholar
Plançon, A., and Tchoubar, C. 1977b. Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites. Clays & Clay Miner. 25: 436450.CrossRefGoogle Scholar
Plançon, A., and Zacharie, C. 1990. An expert system for the structural characterization of kaolinites. Clay Miner. 25: 249260.CrossRefGoogle Scholar
Suitch, P. R., and Young, R. A. 1983. Atom positions in highly ordered kaolinite. Clays & Clay Miner. 31: 357366.CrossRefGoogle Scholar
Tchoubar, C., Plançon, A., Brahim, J. Ben, Clinard, C., and Sow, C. 1982. Caractéristiques structurales des kaolinites désordonnées. Bull. Mineral. 105: 477491.Google Scholar
Thompson, J. G., and Withers, R. L. 1987. A transmission electron microscopy contribution to the structure of kaolinite. Clays & Clay Miner. 35: 237239.CrossRefGoogle Scholar
Treacy, M. M., Newsam, J. M., and Deem, M. W. 1991. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Land. 433: 499520.Google Scholar
Van Olphen, H., and Fripiat, J. J. 1979. Data Handbook for Clay Minerals and Other Non-Metallic Minerals. Oxford: Pergamon Press, 7182.Google Scholar
Young, R. A., and Hewat, A. W. 1988. Verification of the triclinic crystal structure of kaolinite. Clays & Clay Miner. 36: 225232.CrossRefGoogle Scholar