Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-08T10:00:28.012Z Has data issue: false hasContentIssue false

Catalytic Reduction of Congo Red to Low-Toxicity Forms Using a Low-Cost Catalyst Based on Modified Bentonite Material

Published online by Cambridge University Press:  01 January 2024

Mehdi Zahraoui
Affiliation:
Département Génie Des Procédés, Faculté Des Sciences Et Technologies, Université de Relizane, 48000 Relizane, Algeria Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
Adel Mokhtar*
Affiliation:
Département Génie Des Procédés, Faculté Des Sciences Et Technologies, Université de Relizane, 48000 Relizane, Algeria Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
Zohra Aouali Kebir Medjhouda
Affiliation:
Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
Soumia Abdelkrim
Affiliation:
Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
Bouhadjar Boukoussa
Affiliation:
Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria Département de Génie Des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
Amal Djelad
Affiliation:
Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
Mohammed Abdelkrim Hasnaoui
Affiliation:
Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
Mohamed Sassi
Affiliation:
Laboratoire de Chimie Des Matériaux L.C.M., Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
Mohamed Abboud
Affiliation:
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

Abstract

The reduction of azo dyes to less toxic and more easily biodegradable amine derivatives is an effective strategy for the treatment of industrial wastewater. The present work aimed to study the reduction reaction of azo dye Congo red (CR) catalyzed by nanoparticles (NPs) of chromium oxides (Cr2O3NPs) immobilized on bentonite in the presence of NaBH4. Cr(III) ions were intercalated using ion exchange reactions to obtain Cr-bentonite, and then the immobilized chromium cations were treated using NaBH4 leading to the formation of Cr2O3NPs-bentonite. The physicochemical properties of the samples were investigated using X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), atomic absorption spectrometry (AAS), UV–Visible diffuse reflectance (UV–Vis DR), and Fourier-transform infrared (FTIR) spectroscopy techniques. The results showed the formation of various chromium species, in which the most dominant were chromium oxide nanoparticles, on the bentonite surface with an average particle size between 20 and 35 nm. Line-scan analysis showed a reactive catalytic surface due to the excellent distribution of Cr on the bentonite surfaces. The best-performing catalyst, Cr2O3NPs-bentonite, displayed significant catalytic activity compared to the bentonite and Cr-bentonite materials, with a full reduction time of 630 s and a rate constant, kapp, equal to 0.034 s–1. The resulting products (benzidine and sodium 3, 4-diaminonaphthalene-1-sulfonate) from the catalytic reduction exhibited low toxicity compared to the CR dye; these products are easy to use in chemical synthesis. All results collected from this work indicated that this low-cost catalyst can be exploited to eliminate other dyes from the environment.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Jun Kawamata

References

Abdelkrim, S., Mokhtar, A., Djelad, A., Bennabi, F., Souna, A., Bengueddach, A., Sassi, M. Chitosan/ag-bentonite nanocomposites: Preparation, characterization, swelling and biological properties Journal of Inorganic and Organometallic Polymers and Materials 2020 30 831840 10.1007/s10904-019-01219-8CrossRefGoogle Scholar
Abdelkrim, S., Mokhtar, A., Djelad, A., Hachemaoui, M., Boukoussa, B., Sassi, M. Insights into catalytic reduction of dyes catalyzed by nanocomposite beads alginate@ Fe3O4: Experimental and DFT study on the mechanism of reduction Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022 650 10.1016/j.colsurfa.2022.129595CrossRefGoogle Scholar
Ahmad, Z., Shamim, A., Mahmood, S., Mahmood, T., Khan, F. U. Biological synthesis and characterization of chromium (III) oxide nanoparticles Engineering and Applied Science Letters 2018 1 2329 10.30538/psrp-easl2018.0008CrossRefGoogle Scholar
Alexander, J. A., Ahmad Zaini, M. A., Surajudeen, A., Aliyu, E-NU, Omeiza, A. U. Surface modification of low-cost bentonite adsorbents—a review Particulate Science and Technology 2019 37 538549 10.1080/02726351.2018.1438548CrossRefGoogle Scholar
Almontasser, A. & Parveen, A. Preparation and characterization of chromium oxide nanoparticles. Proceedings of the AIP Conference Proceedings, 2020, AIP Publishing LLC, Pp. 020010.Google Scholar
Andrades, M. S., Rodríguez-Cruz, M. S., Sánchez-Martín, M. J., Sánchez-Camazano, M. Effect of the modification of natural clay minerals with hexadecylpyridinium cation on the adsorption–desorption of fungicides International Journal of Environmental Analytical Chemistry 2004 84 133141 10.1080/03067310310001593701CrossRefGoogle Scholar
Ansari Mojarad, A., Tamjidi, S., Esmaeili, H. Clay/starch/Fe3O4 nanocomposite as an efficient adsorbent for the removal of methyl violet dye from aqueous media International Journal of Environmental Analytical Chemistry 2020 102 122Google Scholar
Arbaoui, F., Boucherit, M. N. Comparison of two algerian bentonites: Physico-chemical and retention capacity study Applied Clay Science 2014 91 611 10.1016/j.clay.2014.02.001CrossRefGoogle Scholar
Aroke, U., Abdulkarim, A., Ogubunka, R. Fourier-transform infrared characterization of kaolin, granite, bentonite and barite ATBU Journal of Environmental Technology 2013 6 4253Google Scholar
Asli, B., Abdelkrim, S., Zahraoui, M., Mokhtar, A., Hachemaoui, M., Bennabi, F., Ahmed, A. B., Sardi, A., Boukoussa, B. Catalytic reduction and antibacterial activity of MCM-41 modified by silver nanoparticles Silicon 2022 14 1258712598 10.1007/s12633-022-01963-6CrossRefGoogle Scholar
Avila, M. C., Lick, I. D., Comelli, N. A., Ruiz, M. L. Adsorption of an anionic dye from aqueous solution on a treated clay Groundwater for Sustainable Development 2021 15 10.1016/j.gsd.2021.100688CrossRefGoogle Scholar
Bakr, E. A., El-Attar, H. G., Salem, M. A. Colloidal ag@ pd core–shell nanoparticles showing fast catalytic eradication of dyes from water and excellent antimicrobial behavior Research on Chemical Intermediates 2019 45 15091526 10.1007/s11164-018-3679-3CrossRefGoogle Scholar
Benali, F., Boukoussa, B., Ismail, I., Hachemaoui, M., Iqbal, J., Taha, I., Cherifi, Z., Mokhtar, A. One pot preparation of CeO2@ alginate composite beads for the catalytic reduction of mb dye: Effect of cerium percentage Surfaces and Interfaces 2021 26 10.1016/j.surfin.2021.101306CrossRefGoogle Scholar
Benmaati, A., Boukoussa, B., Hadjadj Aoul, R., Hachemaoui, M., Kerbadou, R. M., Habib Zahmani, H., Hacini, S. Insights into catalytic reduction of organic pollutants catalyzed by nanoparticles supported on zeolite clinoptilolite Silicon 2022 14 88318843 10.1007/s12633-022-01671-1CrossRefGoogle Scholar
Carretero, M. I. Clay minerals and their beneficial effects upon human health. A Review Applied Clay Science 2002 21 155163 10.1016/S0169-1317(01)00085-0CrossRefGoogle Scholar
Carretero, M. I., Gomes, C., Tateo, F. Clays and human health Developments in Clay Science 2006 1 717741 10.1016/S1572-4352(05)01024-XCrossRefGoogle Scholar
Chen, M., Liu, P., Wang, C., Ren, W., Diao, G. Fast catalytic reduction of an azo dye by recoverable and reusable Fe3O4@ pani@ au magnetic composites New Journal of Chemistry 2014 38 45664573 10.1039/C4NJ00806ECrossRefGoogle Scholar
Cheng, M., Song, W., Ma, W., Chen, C., Zhao, J., Lin, J., Zhu, H. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation Applied Catalysis B: Environmental 2008 77 355363 10.1016/j.apcatb.2007.08.006CrossRefGoogle Scholar
Cheng, Y., Zhang, X., Xie, W., Chen, D. & Li, G. (2013) The adsorptive ability of Ti-pillared montmorillonite for lead (II) cations. Proceedings of the 2013 International Conference on Materials for Renewable Energy and Environment, pp. 577580.Google Scholar
De León, M. A., Castiglioni, J., Bussi, J., Sergio, M. Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process Catalysis Today 2008 133 600605 10.1016/j.cattod.2007.12.130CrossRefGoogle Scholar
Gomes, CdSF, Silva, JBP Minerals and clay minerals in medical geology Applied Clay Science 2007 36 421 10.1016/j.clay.2006.08.006CrossRefGoogle Scholar
Hachemaoui, M., Boukoussa, B., Ismail, I., Mokhtar, A., Taha, I., Iqbal, J., Hacini, S., Bengueddach, A., Hamacha, R. CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes Colloids and Surfaces a: Physicochemical and Engineering Aspects 2021 623 10.1016/j.colsurfa.2021.126729CrossRefGoogle Scholar
Hachemaoui, M., Mokhtar, A., Ismail, I., Mohamedi, M. W., Iqbal, J., Taha, I., Bennabi, F., Zaoui, F., Bengueddach, A., Hamacha, R. M (M: Cu Co, Cr or Fe) nanoparticles-loaded metal-organic framework mil-101 (Cr) material by sonication process: Catalytic activity and antibacterial properties Microporous and Mesoporous Materials 2021 323 10.1016/j.micromeso.2021.111244CrossRefGoogle Scholar
Hayati-Ashtiani, M. Characterization of nano-porous bentonite (montmorillonite) particles using FTIR and BET-BJH analyses Particle & Particle Systems Characterization 2011 28 7176 10.1002/ppsc.201100030CrossRefGoogle Scholar
Hosseini, F., Hosseini, F., Jafari, S. M., Taheri, A. Bentonite nanoclay-based drug-delivery systems for treating melanoma Clay Minerals 2018 53 5363 10.1180/clm.2018.4CrossRefGoogle Scholar
Hudson, M. (1984) Journal of environmental science and health. Part c: Environmental carcinogenesis reviews: Edited by joseph g. Arcos, mary f. Argus and yin-tak woo. Price: Volume 1, number 1, 1983 (2 issues), institutional rate $31.50, individual rate $15.75. Issn: 0736-3001. Food Chemistry, 15, 67.CrossRefGoogle Scholar
Ikhtiyarova, G., Özcan, A. S., Gök, Ö, Özcan, A. Characterization of natural and organobentonite by XRD, SEM, FT-IR, and thermal analysis techniques and its adsorption behaviour in aqueous solutions Clay Minerals 2012 47 3144 10.1180/claymin.2012.047.1.31CrossRefGoogle Scholar
Imanipoor, J., Mohammadi, M., Dinari, M. Evaluating the performance of l-methionine modified montmorillonite k10 and 3-aminopropyltriethoxysilane functionalized magnesium phyllosilicate organoclays for adsorptive removal of azithromycin from water Separation and Purification Technology 2021 275 10.1016/j.seppur.2021.119256CrossRefGoogle Scholar
Jana, D., & De, G. (2012). Controlled and stepwise generation of Cu2O, Cu2O@Cu and Cu nanoparticles inside the transparent alumina films and their catalytic activity. RSC Advances, 2, 96069613.CrossRefGoogle Scholar
Jlassi, K., Krupa, I., & Chehimi, M.M. (2017) Overview: Clay preparation, properties, modification. Chapter 1, pp. 128 In Jlassi, K., Chehimi, M.M., and Thomas, S. (eds.). Clay-Polymer Nanocomposites, Elsevier, https://urldefense.com/v3/__https://doi.org/10.1016/B978-0-323-46153-5.00001-XGoogle Scholar
Joseph, A., Vellayan, K., González, B., Vicente, M. A., Gil, A. Effective degradation of methylene blue in aqueous solution using pd-supported Cu-doped Ti-pillared montmorillonite catalyst Applied Clay Science 2019 168 710 10.1016/j.clay.2018.10.009CrossRefGoogle Scholar
Kaur, N., Kishore, D. Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis Journal of Chemistry and Pharmaceutical Research 2012 4 9911015Google Scholar
Khan, S. A., Shahid, S., Hanif, S., Almoallim, H. S., Alharbi, S. A., Sellami, H. Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities International Journal of Molecular Sciences 2021 22 502 10.3390/ijms22020502CrossRefGoogle ScholarPubMed
Korichi, S., Elias, A., Mefti, A. Characterization of smectite after acid activation with microwave irradiation Applied Clay Science 2009 42 432438 10.1016/j.clay.2008.04.014CrossRefGoogle Scholar
Krishnan, S.K., Subbiah, K., Kalivel, P. & Subramanian, K. (2021) Degradation of azo dye red me4bl treated with immobilised bimetallic zero-valent iron nanoparticles doped with palladium. International Journal of Environmental Analytical Chemistry, 112. https://doi.org/10.1080/03067319.2021.2007381CrossRefGoogle Scholar
Li, H., Wu, P., Dang, Z., Zhu, N., Li, P., Wu, J. Synthesis, characterization, and visible-light photo-fenton catalytic activity of hydroxy Fe/Al-intercalated montmorillonite Clays and Clay Minerals 2011 59 466477 10.1346/CCMN.2011.0590504CrossRefGoogle Scholar
Liang, S-T, Zhang, H-L, Luo, M-T, Luo, K-J, Li, P., Xu, H-B, Zhang, Y. Colour performance investigation of a Cr2O3 green pigment prepared via the thermal decomposition of CrOOH Ceramics International 2014 40 43674373 10.1016/j.ceramint.2013.08.107CrossRefGoogle Scholar
Liang, S-T, Zhang, H-L, Luo, M-T, Liu, H-X, Bai, Y-L, Xu, H-B, Zhang, Y. Preparation of Cr2O3-based pigments with high NIR reflectance via thermal decomposition of CrOOH Transactions of Nonferrous Metals Society of China 2015 25 26462647 10.1016/S1003-6326(15)63887-0CrossRefGoogle Scholar
Madejová, J., Komadel, P. Baseline studies of The Clay Minerals Society source clays: Infrared methods Clays and Clay Minerals 2001 49 410432 10.1346/CCMN.2001.0490508CrossRefGoogle Scholar
Madhav, S., Ahamad, A., Singh, P., Mishra, P. K. A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods Environmental Quality Management 2018 27 3141 10.1002/tqem.21538CrossRefGoogle Scholar
Madi, C., Tabbal, M., Christidis, T., Isber, S., Nsouli, B. & Zahraman, K. Microstructural characterization of chromium oxide thin films grown by remote plasma assisted pulsed laser deposition. Proceedings of the Journal of Physics: Conference Series, 2007, IOP Publishing, Pp. 128.Google Scholar
Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters Journal of the Society for Industrial and Applied Mathematics 1963 11 431441 10.1137/0111030CrossRefGoogle Scholar
Mekki, A., Hachemaoui, M., Mokhtar, A., Issam, I., Bennabi, F., Iqbal, J., Rahmani, K., Bengueddach, A., Boukoussa, B. Catalytic behavior and antibacterial/antifungal activities of new mnps/zeolite@ alginate composite beads International Journal of Biological Macromolecules 2022 198 3745 10.1016/j.ijbiomac.2021.12.063CrossRefGoogle ScholarPubMed
Mokhtar, A., Bennabi, F., Abdelkrim, S., Sardi, A., Boukoussa, B., Souna, A., Bengueddach, A., Sassi, M. Evaluation of intercalated layered materials as an antimicrobial and drug delivery system: A comparative study Journal of Inclusion Phenomena and Macrocyclic Chemistry 2020 96 353364 10.1007/s10847-020-00978-zCrossRefGoogle Scholar
Naseem, K., Farooqi, Z. H., Begum, R., Irfan, A. Removal of congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review Journal of Cleaner Production 2018 187 296307 10.1016/j.jclepro.2018.03.209CrossRefGoogle Scholar
Ngah, W. W., Teong, L., Toh, R., Hanafiah, M. Utilization of chitosan–zeolite composite in the removal of Cu (II) from aqueous solution: Adsorption, desorption and fixed bed column studies Chemical Engineering Journal 2012 209 4653 10.1016/j.cej.2012.07.116CrossRefGoogle Scholar
Park, J-H, Shin, H-J, Kim, M. H., Kim, J-S, Kang, N., Lee, J-Y, Kim, K-T, Lee, J. I., Kim, D-D Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems Journal of Pharmaceutical Investigation 2016 46 363375 10.1007/s40005-016-0258-8CrossRefGoogle ScholarPubMed
Patterson, A. The scherrer formula for x-ray particle size determination Physical Review 1939 56 978 10.1103/PhysRev.56.978CrossRefGoogle Scholar
Petrović, R., Lazarević, S., Janković-Častvan, I., Matić, T., Milivojević, M., Milošević, D., Veljović, Đ Removal of trivalent chromium from aqueous solutions by natural clays: Valorization of saturated adsorbents as raw materials in ceramic manufacturing Applied Clay Science 2023 231 10.1016/j.clay.2022.106747CrossRefGoogle Scholar
Singh, B. K., Lee, S., Na, K. An overview on metal-related catalysts: Metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites Rare Metals 2020 39 751766 10.1007/s12598-019-01205-6CrossRefGoogle Scholar
Teğin, İ. & Saka, C. (2021) Chemical and thermal activation of clay sample for improvement adsorption capacity of methylene blue. International Journal of Environmental Analytical Chemistry, 112. https://doi.org/10.1080/03067319.2021.1928105CrossRefGoogle Scholar
Tharmaraj, V., Vandarkuzhali, SAA, Karthikeyan, G., Pachamuthu, M. Efficient and recyclable AuNPs@ aminoclay nanocomposite catalyst for the reduction of organic dyes Surfaces and Interfaces 2022 32 10.1016/j.surfin.2022.102052CrossRefGoogle Scholar
Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., Yu, G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review Separation and Purification Technology 2019 224 373387 10.1016/j.seppur.2019.05.040CrossRefGoogle Scholar
Varadavenkatesan, T., Selvaraj, R., Vinayagam, R. Green synthesis of silver nanoparticles using thunbergia grandiflora flower extract and its catalytic action in reduction of congo red dye Materials Today: Proceedings 2020 23 3942Google Scholar
Zhang, Q., Gao, S., Yu, J. Metal sites in zeolites: Synthesis, characterization, and catalysis Chemical Reviews 2022 10.1021/acs.chemrev.2c00315Google ScholarPubMed
Supplementary material: File

Zahraoui et al. supplementary material
Download undefined(File)
File 323.2 KB