Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-06T13:07:45.302Z Has data issue: false hasContentIssue false

Characteristics and Production Technologies of Byzantine Building Bricks from the Anaia Church in Western Anatolia

Published online by Cambridge University Press:  01 January 2024

Elif Çam*
Affiliation:
Department of Conservation and Restoration of Cultural Heritage, İzmir Institute of Technology, 35430, Urla, İzmir, Türkiye
Elif Uğurlu Sağın
Affiliation:
Department of Conservation and Restoration of Cultural Heritage, İzmir Institute of Technology, 35430, Urla, İzmir, Türkiye

Abstract

Fired bricks were valued as essential building materials in the central tradition of Byzantine architecture in Constantinople (İstanbul), Anatolia, and the Balkans. In this study, Byzantine bricks from three construction periods, covering nearly nine centuries (fifth–fourteenth centuries), of Anaia Church (Kadıkalesi) in Western Anatolia were investigated to determine their characteristics, raw material properties, and production technologies. The characteristics of the bricks were evaluated and compared in order to identify similarities and differences between the periods and to investigate the continuity of the tradition of brick production over centuries. Basic physical and colorimetric properties, chemical and mineralogical compositions, thermal behavior, and microstructural and mechanical properties of bricks were determined by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (SEM–EDS), Fourier-transform infrared spectrometry (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and mechanical tests. The results indicated that all the bricks in the Anaia Church were brown-beige colored, highly porous, low-density materials with low mechanical strength. They were produced from Ca-rich clays, probably obtained from two different sources used during all construction periods. The mineralogical composition and thermal properties revealed that the bricks from the first and second periods were fired at between 800 and 900°C and the bricks from the third period were fired at < 850°C. Greater calcium content and firing temperatures were found to reduce the total porosity and the number of small pores (< 10 μm) and increase the mechanical strength of the bricks. The results of the study revealed no significant differences in the production of bricks, including raw material sources and kiln conditions, for the different construction periods of the church.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J.-P. (2005). Roman Building: Materials and Techniques. Routledge.Google Scholar
Aslan Özkaya, ÖBöke, HProperties of Roman bricks and mortars used in Serapis temple in the city of Pergamon Materials Characterization 2009 60 9 995100010.1016/j.matchar.2009.04.00310.1016/j.matchar.2009.04.003CrossRefGoogle Scholar
ASTM C67–07. (2007). Standard test methods for sampling and testing brick and structural clay tile. ASTM International, PA, USA.Google Scholar
Bakırer, Ö. (1981). Selçuklu Öncesi ve Selçuklu Dönemi Anadolu Mimarisinde Tuğla Kullanımı. Middle East Technical University.Google Scholar
Ballato, PCruciani, GDalconi, MCFabbri, BMacchiarola, MMineralogical study of historical bricks from the Great Palace of the Byzantine Emperors in Istanbul based on powder X-ray diffraction data European Journal of Mineralogy 2005 17 5 77778410.1127/0935-1221/2005/0017-077710.1127/0935-1221/2005/0017-0777CrossRefGoogle Scholar
Bellanger, MHomand, FRemy, JMWater behaviour in limestones as a function of pores structure: Application to frost resistance of some Lorraine limestones Engineering Geology 1993 36 9910810.1016/0013-7952(93)90022-510.1016/0013-7952(93)90022-5CrossRefGoogle Scholar
Benavente, DLinares-Fernández, LCultrone, GSebastián, EInfluence of microstructure on the resistance to salt crystallisation damage in brick Materials and Structures/materiaux Et Constructions 2006 39 1 10511310.1617/s11527-005-9037-0Google Scholar
Bolognesi, E., Fabbri, B., Macchiarola, M., & Kotas, P. (2004). Characterisation of Historic Bricks from the Ruins of the Great Imperial Palace in Istanbul. Key Engineering Materials, 264–268(III), 2383–2386. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.264-268.2383CrossRefGoogle Scholar
Buchner, T., Kiefer, T., Gaggl, W., Zelaya-Lainez, L., & Füssl, J. (2021). Automated Morphometrical Characterization of Material Phases of Fired Clay Bricks Based on Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and Powder X-ray Diffraction. Construction and Building Materials, 288, 122909. https://doi.org/10.1016/J.CONBUILDMAT.2021.122909CrossRefGoogle Scholar
Calliari, ICanal, ECavazzoni, SLazzarini, LRoman bricks from the Lagoon of Venice: A chemical characterization with methods of multivariate analysis Journal of Cultural Heritage 2001 2 232910.1016/S1296-2074(01)01110-410.1016/S1296-2074(01)01110-4CrossRefGoogle Scholar
Cardiano, PIoppolo, SDe Stefano, CPettignano, ASergi, SPiraino, PStudy and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily) Analytica Chimica Acta 2004 519 1 10311110.1016/j.aca.2004.05.04210.1016/j.aca.2004.05.042CrossRefGoogle Scholar
Carretero, MIDondi, MFabbri, BRaimondo, MThe influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays Applied Clay Science 2002 20 6 30130610.1016/S0169-1317(01)00076-X10.1016/S0169-1317(01)00076-XCrossRefGoogle Scholar
Chukanov, N. V. (2014). Infrared spectra of mineral species. Springer.https://doi.org/10.1007/978-94-007-7128-4CrossRefGoogle Scholar
Cultrone, GRodriguez-Navarro, CSebastian, ECazalla, ODe La Torre, MJCarbonate and silicate phase reactions during ceramic firing European Journal of Mineralogy 2001 13 3 62163410.1127/0935-1221/2001/0013-062110.1127/0935-1221/2001/0013-0621CrossRefGoogle Scholar
Cultrone, GSebastián, EElert, Kde la Torre, MJCazalla, ORodriguez-Navarro, CInfluence of mineralogy and firing temperature on the porosity of bricks Journal of the European Ceramic Society 2004 24 3 54756410.1016/S0955-2219(03)00249-810.1016/S0955-2219(03)00249-8CrossRefGoogle Scholar
Cultrone, GSidraba, ISebastián, EMineralogical and physical characterization of the bricks used in the construction of the “Triangul Bastion”, Riga (Latvia) Applied Clay Science 2005 28 29730810.1016/j.clay.2004.02.00510.1016/j.clay.2004.02.005CrossRefGoogle Scholar
Davey, N. (1961). A History of Building Materials. Phoenix House Publication.Google Scholar
De Benedetto, GELaviano, RSabbatini, LZambonin, PGInfrared spectroscopy in the mineralogical characterization of ancient pottery Journal of Cultural Heritage 2002 3 17718610.1016/S1296-2074(02)01178-010.1016/S1296-2074(02)01178-0CrossRefGoogle Scholar
Demir, SŞerifaki, KBöke, HExecution technique and pigment characteristics of Byzantine wall paintings of Anaia Church in Western Anatolia Journal of Archaeological Science: Reports 2018 17 394610.1016/J.JASREP.2017.09.037Google Scholar
Drebushchak, VAMylnikova, LNDrebushchak, TNBoldyrev, VVThe investigation of ancient pottery: Application of thermal analysis Journal of Thermal Analysis and Calorimetry 2005 82 3 61762610.1007/S10973-005-0942-910.1007/s10973-005-0942-9CrossRefGoogle Scholar
El Ouahabi, MDaoudi, LHatert, FFagel, NModified Mineral Phases During Clay Ceramic Firing Clays and Clay Minerals 2015 63 40441310.1346/CCMN.2015.063050610.1346/CCMN.2015.0630506CrossRefGoogle Scholar
Elert, KCultrone, GRodriguez-Navarro, CSebastián Pardo, EDurability of bricks used in the conservation of historic buildings - Influence of composition and microstructure Journal of Cultural Heritage 2003 4 2 919910.1016/S1296-2074(03)00020-710.1016/S1296-2074(03)00020-7CrossRefGoogle Scholar
Eroğlu, M., & Akyol, A. A. (2017). Antik Yapı Malzemesi Olarak Tuğla ve Kiremit: Boğsak Adası Bizans Yerleşimi Örneklemi. Sanat ve Tasarım Dergisi, 141–162. https://doi.org/10.18603/sanatvetasarim.370745CrossRefGoogle Scholar
European Standards. (2015). BS EN 772–1:2011+A1:2015 Methods of test for masonry units Determination of compressive strength.Google Scholar
Fernandes, F. M., Lourenço, P. B., & Castro, F. (2010). Ancient Clay Bricks: Manufacture and Properties. Materials, Technologies and Practice in Historic Heritage Structures, 29–48. https://doi.org/10.1007/978-90-481-2684-2_3CrossRefGoogle Scholar
Foss, CEphesus After Antiquity: A Late Antique 1979 Cambridge University PressGoogle Scholar
Gadsden, JAInfrared Spectra of Minerals and Related Inorganic Compounds 1975 ButterworthsGoogle Scholar
Gerharz, R. R., Lantermann, R., & Spennemann, D. (1988). Munsell color charts: A necessity for archaeologists? Australian Historical Archaeology, 6, 88–95. https://www.jstor.org/stable/29543213Google Scholar
Gliozzo, E. (2020). Ceramic technology. How to reconstruct the firing process. Archaeological and Anthropological Sciences, 12(11), 260. https://doi.org/10.1007/s12520-020-01133-yCrossRefGoogle Scholar
Hazinedar Coşkun, TKuşadası, Kadıkalesi Kazısı’nın 2017–2020 Sezonlarına Ait Bizans Cam Örnekleri Sanat Tarihi Dergisi 2021 30 2 1019103710.29135/std.90151310.29135/std.901513CrossRefGoogle Scholar
Helen, T. (1975). Organization of Roman brick production in the first and second centuries A.D.: an interpretation of Roman brick stamps. Suomalainen Tiedeakatemia.Google Scholar
Hlavay, JJonas, KElek, SInczedy, JCharacterization of the Particle Size and the Crystallinity of Certain Minerals by IR Spectrophotometry and Other Instrumental Methods - 2. Investigations on Quartz and Feldspar Clays and Clay Minerals 1978 26 13914310.1346/CCMN.1978.026020910.1346/CCMN.1978.0260209CrossRefGoogle Scholar
İspir, M. (2010). A Comprehensive Experimental Research on the Behaviour of Historical Brick Masonry Walls of 19th Century Buildings. Unpublished PhD Thesis, Istanbul Technical University.Google Scholar
Ion, RMDumitriu, IFierascu, RCIon, MLPop, SFRadovici, CBunghez, RINiculescu, VIRThermal and mineralogical investigations of historical ceramic: A case study Journal of Thermal Analysis and Calorimetry 2011 104 2 48749310.1007/s10973-011-1517-610.1007/s10973-011-1517-6CrossRefGoogle Scholar
Kahya, Y. (1992). İstanbul Bizans Mimarisinde Kullanılan Tuğlaların Fiziksel ve Mekanik Özellikleri [Doctoral Thesis]. Unpublished PhD Thesis, Istanbul Technical University.Google Scholar
Kanmaz, M. B., & Ipekoǧlu, B. (2016). Antik Kentlerde Deprem Sonrası Yapılan Onarımlar: Anaia Bizans Kilisesi. Kargir Yapılarda Koruma ve Onarım Semineri VIII Conference Proceedings, 8, 189–205.Google Scholar
Kazancı, NDündar, SAlçiçek, MCGürbüz, AQuaternary deposits of the Büyük Menderes Graben in western Anatolia, Turkey: Implications for river capture and the longest Holocene estuary in the Aegean Sea Marine Geology 2009 264 3–4 16517610.1016/j.margeo.2009.05.00310.1016/j.margeo.2009.05.003CrossRefGoogle Scholar
Kretz, RSymbols for rock-forming minerals American Mineralogist 1983 68 277279Google Scholar
Kumar Mishra, A., Mishra, A., & Anshumali. (2021). Geochemical Characterization of Bricks Used in Historical Monuments of 14–18th Century CE of Haryana Region of the Indian Subcontinent: Reference to Raw Materials and Production Technique. Construction and Building Materials, 269, 121802. https://doi.org/10.1016/j.conbuildmat.2020.121802CrossRefGoogle Scholar
Kurugöl, STekin, ÇAnadolu’da Bizans Dönemi kale Yapılarında Kullanılan Tuğlaların Fiziksel, Kimyasal ve Mekanik Özelliklerinin Değerlendirilmesi Journal of the Faculty of Engineering and Architecture of Gazi Univeristy 2010 25 4 767777Google Scholar
Lopez-Arce, PGarcia-Guinea, JWeathering traces in ancient bricks from historic buildings Building and Environment 2005 40 7 92994110.1016/j.buildenv.2004.08.02710.1016/j.buildenv.2004.08.027CrossRefGoogle Scholar
Malacrino, C. G. (2010). Constructing the Ancient World: Architectural Techniques of the Greeks and Romans. Getty Publications.Google Scholar
Mango, C. A. (1985). Byzantine architecture. Electa Editrice.Google Scholar
Maniatis, YTite, MSTechnological Examination of Neolithic-Bronze Age Pottery from Central and Southeast Europe and from the Near East Journal of Archaeological Science 1981 8 1 597610.1016/0305-4403(81)90012-110.1016/0305-4403(81)90012-1CrossRefGoogle Scholar
Maritan, LNodari, LMazzoli, CMilano, ARusso, UInfluence of Firing Conditions on Ceramic Products: Experimental Study on Clay Rich in Organic Matter Applied Clay Science 2006 31 1–2 11510.1016/j.clay.2005.08.00710.1016/j.clay.2005.08.007CrossRefGoogle Scholar
Mercangöz, Z. (2005). 4. Yılında Kuşadası, Kadıkalesi/Anaia Kazısı. Sanat Tarihi Dergisi, XIV–1, 205–223.Google Scholar
Mercangöz, Z. (2007). Emporion ve kommerkion olarak anaia’nın değişken tarihsel yazgısı. On İkinci ve On Üçüncü Yüzyıllarda Bizans Dünyasında Değişim, I. Uluslararası Sevgi Gönül Bizans Araştırmaları Sempozyumu / First International Sevgi Gönül Byzantine Studies Symposium, Bildiriler/ Proceedings, 25-28 June 2007, 279–292.Google Scholar
Mercangöz, Z. (2013). Archaeological Finds on Late Byzantine Commercial Productions at Kadıkalesi, Kuşadası. In Z. Mercangöz (Ed.), Byzantine Craftsmen - Latin Patrons (pp. 25–58).Google Scholar
Mercangöz, Z., & Tok, E. (2011). Kuşadası kadıkalesi 2010 kazı sezonu calışmaları. 33. Kazı Sonuçları Toplantısı-2, 23-28 May 2011, Ministry of Culture and Tourism, Ankara, 353–372.Google Scholar
Moorey, P. R. S. (1999). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Eisenbrauns.Google Scholar
Moropoulou, ABakolas, ABisbikou, KThermal Analysis as a Method of Characterizing Ancient Ceramic Technologies Thermochimica Acta 1995 2570 74375310.1016/0040-6031(95)02570-710.1016/0040-6031(95)02570-7CrossRefGoogle Scholar
Moropoulou, AÇakmak, APolikreti, KProvenance and Technology Investigation of Agia Sophia Bricks, Istanbul, Turkey Journal of the American Ceramic Society 2002 85 2 36637210.1111/j.1151-2916.2002.tb00098.x10.1111/j.1151-2916.2002.tb00098.xCrossRefGoogle Scholar
MTA. (2002). Türkiye jeoloji haritası / Geological map of Turkey (Denizli). Retrieved March 2, 2023. https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/DENIZLI.pdfGoogle Scholar
Munsell Color (Firm). (2000). Munsell Soil Color Charts: year 2000 revised washable edition. GretagMacbeth, Munsell Color.Google Scholar
Oguz, C., Turker, F., & Kockal, N. U. (2014). Construction materials used in the historical roman era bath in Myra. Scientific World Journal, 2014. https://doi.org/10.1155/2014/536105CrossRefGoogle Scholar
Ousterhout, RMaster Builders of Byzantium 1999 Princeton University PressGoogle Scholar
Özyıldırım, MAkyol, AAOlba Tuğla Örneği: Arkeolojik ve Arkeometrik Yaklaşım Seleucia 2016 6 395411Google Scholar
Paama, LPitkãnen, IPerämäki, PAnalysis of archaeological samples and local clays using ICP-AES, TG-DTG and FTIR techniques Talanta 2000 51 2 34935710.1016/S0039-9140(99)00281-710.1016/S0039-9140(99)00281-7CrossRefGoogle ScholarPubMed
Pavia, SThe Determination of Brick Provenance and Technology Using Analytical Techniques from the Physical Sciences Archaeometry 2006 48 2 20121810.1111/j.1475-4754.2006.00251.x10.1111/j.1475-4754.2006.00251.xCrossRefGoogle Scholar
Pérez-Monserrat, EMCausarano, MMaritan, LChavarria, APietro, GCultrone, GRoman brick production technologies in Padua (Northern Italy) along the Late Antiquity and Medieval Times: Durable bricks on high humid environs Journal of Cultural Heritage 2022 54 122010.1016/j.culher.2022.01.00710.1016/j.culher.2022.01.007CrossRefGoogle Scholar
Pérez-Monserrat, E. M., Maritan, L., Garbin, E., & Cultrone, G. (2021). Production Technologies of Ancient Bricks from Padua, Italy: Changing Colors and Resistance over Time. Minerals, 11(7). https://doi.org/10.3390/min11070744CrossRefGoogle Scholar
Ramachandran, V. S., Paroli, R. M., Beaudoin, J. J., & Delgado, A. H. (2002). 12 - Clay-Based Construction Products. In V. S. Ramachandran, R. M. Paroli, J. J. Beaudoin, & A. H. Delgado (Eds.), Handbook of Thermal Analysis of Construction Materials (pp. 491–530). William Andrew Publishing. https://doi.org/10.1016/B978-081551487-9.50014-1CrossRefGoogle Scholar
Rathossi, C., & Pontikes, Y. (2010). Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: Reaction paths, crystalline phases, microstructure and colour. Journal of the European Ceramic Society, 30(9), 1841–1851. https://doi.org/10.1016/j.jeurceramsoc.2010.02.002CrossRefGoogle Scholar
Riccardi, MPMessiga, BDuminuco, PAn Approach to the Dynamics of Clay Firing Applied Clay Science 1999 15 39340910.1016/S0169-1317(99)00032-010.1016/S0169-1317(99)00032-0CrossRefGoogle Scholar
RILEM. (1980). Essais recommandés pour mesurer l’altération des pierres et évaluer l’efficacité des méthodes de traitement / Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Materials and Construction, 13(73), 175–253.Google Scholar
Scalenghe, RBarello, FSaiano, FFerrara, EFontaine, CCaner, LOlivetti, EBoni, IPetit, SMaterial sources of the Roman brick-making industry in the I and II century A.D. from Regio IX, Regio XI and Alpes Cottiae Quaternary International 2015 357 18920610.1016/j.quaint.2014.11.02610.1016/j.quaint.2014.11.026CrossRefGoogle Scholar
Scatigno, CPrieto-Taboada, NPreite Martinez, MConte, AMMadariaga, JMA Non-Invasive Spectroscopic Study to Evaluate Both Technological Features and Conservation State of Two Types of Ancient Roman Coloured Bricks Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2018 204 556310.1016/j.saa.2018.06.02310.1016/j.saa.2018.06.023CrossRefGoogle ScholarPubMed
Scherer, GWCrystallization in pores Cement and Concrete Research 1999 29 8 1347135810.1016/S0008-8846(99)00002-210.1016/S0008-8846(99)00002-2CrossRefGoogle Scholar
Şerifaki, K. (2017). Determination of Byzantine Wall Painting Techniques in Western Anatolia [Doctoral Thesis]. Unpublished PhD Thesis, Izmir Institute of Technology.Google Scholar
Singh, PSharma, SThermal and spectroscopic characterization of archeological pottery from Ambari, Assam Journal of Archaeological Science: Reports 2016 5 55756310.1016/j.jasrep.2016.01.002Google Scholar
Stefanidou, MPapayianni, IPachta, VAnalysis and characterization of Roman and Byzantine fired bricks from Greece Materials and Structures/materiaux Et Constructions 2015 48 7 2251226010.1617/s11527-014-0306-7Google Scholar
Stuart, B. H. (2007). Molecular Spectroscopy. In Analytical Techniques in Materials Conservation (pp. 109–208). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470060520.CH4CrossRefGoogle Scholar
Stubňa, IPodoba, RRomanesque and Gothic Bricks from Church in Pác - Estimation of the Firing Temperature Epitoanyag-Journal of Silicate Based and Composite Materials 2013 65 485110.14382/epitoanyag-jsbcm.2013.1110.14382/epitoanyag-jsbcm.2013.11CrossRefGoogle Scholar
Taranto, MBarba, LBlancas, JBloise, ACappa, MChiaravalloti, FCrisci, GMCura, MDe Angelis, DDe Luca, RLezzerini, MPecci, AMiriello, DThe bricks of Hagia Sophia (Istanbul, Turkey): A new hypothesis to explain their compositional difference Journal of Cultural Heritage 2019 38 13614610.1016/j.culher.2019.02.00910.1016/j.culher.2019.02.009CrossRefGoogle Scholar
Tarhan, İ., & Işık, İ. (2020). An In-depth Chemometric Study: Archaeometric Characterization of Ceramic Shards Excavated from the Sanctuary of Hecate at Lagina in Muğla (Turkey) by FTIR Spectroscopy and Multivariate Data Analysis. Vibrational Spectroscopy, 111(September). https://doi.org/10.1016/j.vibspec.2020.103172CrossRefGoogle Scholar
Tekin, ÇKurugöl, SPhysicochemical and Pozzolanic Properties of the Bricks Used in Certain Historic Buildings in Anatolia Gazi University Journal of Science 2011 24 4 2011Google Scholar
Tepe, ÇSözbilir, HEski, SSümer, ÖÖzkaymak, ÇUpdated historical earthquake catalog of İzmir region (Western Anatolia) and its importance for the determination of seismogenic source Turkish Journal of Earth Sciences 2021 30 8 77980510.3906/yer-2101-1410.3906/yer-2101-14CrossRefGoogle Scholar
Tucci, P. L. (2015). The Materials and Techniques of Greek and Roman Architecture. In The Oxford Handbook of Greek and Roman Art and Architecture (pp. 241–265). Oxford University Press.Google Scholar
Uğurlu Sağın, E. (2017). Anadolu’da Roma Dönemi Yapı Tuǧlalarının Özellikleri. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(1), 227–236. https://doi.org/10.17341/gazimmfd.300612CrossRefGoogle Scholar
Uğurlu Sağın, EBöke, HCharacteristics of bricks used in the domes of some historic bath buildings Journal of Cultural Heritage 2013 14 3 SUPPL 737610.1016/j.culher.2012.11.03010.1016/j.culher.2012.11.030CrossRefGoogle Scholar
Ulukaya, SYoruç, ABHYüzer, NOktay, DMaterial characterization of byzantine period brick masonry walls revealed in Istanbul (Turkey) Periodica Polytechnica Civil Engineering 2017 61 2 20921510.3311/PPci.8868Google Scholar
Valanciene, VSiauciunas, RBaltusnikaite, JThe influence of mineralogical composition on the colour of clay body Journal of the European Ceramic Society 2010 30 7 1609161710.1016/j.jeurceramsoc.2010.01.01710.1016/j.jeurceramsoc.2010.01.017CrossRefGoogle Scholar
Wang, S., Gainey, L., Mackinnon, I. D. R., Allen, C., Gu, Y., & Xi, Y. (2023). Thermal behaviors of clay minerals as key components and additives for fired brick properties: A review. Journal of Building Engineering, 66, 105802. https://doi.org/10.1016/J.JOBE.2022.105802CrossRefGoogle Scholar
Warr, LNRecommended abbreviations for the names of clay minerals and associated phases Clay Minerals 2020 55 3 26126410.1180/CLM.2020.3010.1180/clm.2020.30CrossRefGoogle Scholar
Whitney, DLEvans, BWAbbreviations for names of rock-forming minerals American Mineralogist 2010 95 18518710.2138/am.2010.337110.2138/am.2010.3371CrossRefGoogle Scholar
Wright, G. R. H. (2005). Ancient Building Technology, Volume 2: Materials (2 Vols). Brill.10.1163/9789047406020CrossRefGoogle Scholar
Wright, G. R. H. (2009). Ancient Building Technology, Volume 3: Construction (2 vols). Brill.10.1163/9789047430896CrossRefGoogle Scholar