Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-19T10:01:00.967Z Has data issue: false hasContentIssue false

Clay Minerals as the Key to the Sequestration of Carbon in Soils

Published online by Cambridge University Press:  01 January 2024

Gordon Jock Churchman*
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
Mandeep Singh
Affiliation:
Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
Amanda Schapel
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia Primary Industries and Regions South Australia, Rural Solutions SA, SA 5000, Australia
Binoy Sarkar
Affiliation:
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
Nanthi Bolan
Affiliation:
Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
*
*E-mail address of corresponding author: jock.churchman@adelaide.edu.au

abstract

Results from earlier laboratory and field experiments were interrogated for the possibilities of sequestration, or long-term accumulation, of carbon from excess greenhouse gases in the atmosphere. In the laboratory study, samples of three (top) soils dominated by kaolinite and illite (together), smectite, and allophane were examined for the adsorption and desorption of dissolved organic carbon (DOC). Adsorption and desorption of DOC were carried out on clay fractions extracted physically and after first native organic matter and then iron oxides were removed chemically. Labeled organic material was added to the soils to assess the priming effect of organic carbon (OC). In the field, changes in OC were measured in sandy soils that had been amended by additions of clay for between 3 and 17 years, both through incorporation of exogenous clay and delving of in situ clay. The laboratory experiments demonstrated that a portion of DOC was held strongly in all soils. The amount of DOC adsorbed depended on clay mineral types, including Fe oxides. Much adsorbed DOC was lost by desorption in water and a substantial amount of native OC was lost on priming with new OC. Addition of clay to soils led to increased OC. Therefore, addition of clay to soil may enhance net sequestration of C. Organic carbon close to mineral surfaces or within microaggregates is held most strongly. Carbon sequestration may occur in subsoils with unsaturated mineral surfaces. However, incorporation of carbon into macroaggregates from enhanced plant growth might be most effective in removing excess carbon from the atmosphere, albeit over the short-term.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, G. & Hughes, B. (2012). An observational study of clay delving and its impact on the A2 horizon in sand over clay soils. Pp 201-210 in: Proceedings of the 5 th joint Australia and New Zealand soil science conference, Hobart. (Burkitt, L.L. and Sparrow, L.A., editors). Australian Society of Soil Science Inc.Google Scholar
Balesdent, J. (1996). The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. European Journal of Soil Science, 47, 485493.CrossRefGoogle Scholar
Balesdent, J., Chenu, C., & Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil & Tillage Research, 53, 215230.CrossRefGoogle Scholar
Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151163.CrossRefGoogle Scholar
Beare, M. H., Hendrix, P. F., & Coleman, D. C. (1994). Water-stable aggregates and organic matter fractions in conventional and notillage soils. Soil Science Society of America Journal, 58,777–786.Google Scholar
Betti, G., Grant, C., Churchman, G., & Murray, R. (2015). Increased profile wettability in texture-contrast soils from clay delving: case studies in South Australia. Soil Research, 53, 125136.CrossRefGoogle Scholar
Blakemore, L.C., Searle, P.L., & Daly, B.K. (1987). Methods for chemical analysis of soils. N.Z. Soil Bureau Scientific Report 80.Google Scholar
Bolan, N. S., Kunhikrishnan, A., Choppala, G. K., Thangarajan, R., & Chung, J. W. (2012). Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Science of the Total Environment, 424, 264270.CrossRefGoogle ScholarPubMed
Cann, M. A. (2000). Clay spreading on water repellent sands in the south east of South Australia-promoting sustainable agriculture. Journal of Hydrology, 231-232, 333341.CrossRefGoogle Scholar
Chabbi, A., Kögel-Knabner, I., & Rumpel, C. (2009). Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry, 41, 256261.CrossRefGoogle Scholar
Chenu, C., & Plante, A. F. (2006). Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the ‘primary organo-mineral complex’. European Journal of Soil Science, 57, 596607.CrossRefGoogle Scholar
Churchman, G. J. (2010). Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis. Physics and Chemistry of the Earth, 35, 927940.CrossRefGoogle Scholar
Churchman, G.J. (2018). Game changer in soil science. functional role of clay minerals in soil. Journal of Plant Nutrition and Soil Science, 181, 99103.CrossRefGoogle Scholar
Churchman, G.J. & Lowe, D.J. (2012). Alteration, formation and occurrence of minerals in soils. Pp. 120 in: Handbook of Soil Sciences. Properties and Processes, 2nd edition. (Huang, P.M., Li, Y., and Sumner, M.E., editors). CRC Press, Boca Raton, Florida, USA.Google Scholar
Churchman, G. J., & Velde, B. (2019). Soil Clays, Linking Geology, Biology, Agriculture, and the Environment. Boca Raton, Florida, USA: CRC Press.CrossRefGoogle Scholar
Churchman, G. J., Foster, R. C., DAcqui, L. P., Janik, L. J., Skjemstad, J. O., Merry, R. H., & Weissmann, D. A. (2010). Effect of land-use history on the potential for carbon sequestration in an Alfisol. Soil & Tillage Research, 109, 2335.CrossRefGoogle Scholar
Churchman, J., Hesterberg, D., & Singh, B. (2012). Soil clays (Editorial). Applied Clay Science, 64, 13.CrossRefGoogle Scholar
Churchman, G. J., Noble, A., Bailey, G., Chittleborough, D., & Harper, R. (2014). Clay addition and redistribution to enhance carbon sequestration in soils. In Hartemink, A. E. & McSweeney, K. (Eds.), Soil Carbon, Progress in Soil Science (pp. 327335). Switzerland: Springer.CrossRefGoogle Scholar
Crossley, P. (2001). Clear opportunities for bleaching and clarifying clays. Industrial Minerals, 2001, 6975.Google Scholar
Denef, K., Six, J., Merckx, R., & Paustian, K. (2004). Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy. Soil Science Society of America Journal, 68, 19351944.CrossRefGoogle Scholar
Dictionary.com (2019). – accessed 12 August 2019CrossRefGoogle Scholar
Eusterhues, K., Rumpel, C., Kleber, M., & Kőgel-Knabner, I. (2003). Stabilisation of organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry, 34, 15911600.CrossRefGoogle Scholar
Eusterhues, K., Rumpel, C., & Kőgel-Knabner, I. (2005). Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry, 36, 15671575.CrossRefGoogle Scholar
FAO/UNESCO. (1995). Digital soil map of the world and derived properties. Italy: Rome.Google Scholar
Finley, B. K., Dijkstra, P., Rasmussen, C., Schwartz, E., Mau, R. L., Liu, X.-J. A., van Gestel, N., & Hungate, B. A. (2018). Soil mineral assemblage and substrate quality effects on microbial priming. Geoderma, 322, 3847.CrossRefGoogle Scholar
Golchin, A., Oades, J. M., Skjemstad, J. O., & Clarke, P. (1994). Soil structure and carbon cycling. Australian Journal of Soil Research, 32, 10431068.CrossRefGoogle Scholar
Hall, D. J., Jones, H. R., Crabtree, W. L., & Daniels, T. L. (2010). Claying and deep ripping can increase crop yields and profits on water repellent sands with marginal fertility in southern Western Australia. Australian Journal of Soil Research, 48, 178187.CrossRefGoogle Scholar
Harper, R.J., Sochacki, S.J., Bell, R.W., & 7 others (2012). Increasing soil carbon storage in sandy soils with clay amendments. P. 75 in: The CCRSPI (Climate Change Research Strategy for the Primary Industries) conference, Melbourne, 2729 Nov., 2012Google Scholar
Hassink, J. (1997). The capacity of soils to preserve organicC and N by their association with clay and silt particles. Plant and Soil, 191, 77– 87.CrossRefGoogle Scholar
Hinsinger, P., Bengouh, A. G., Vetterlin, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117152.CrossRefGoogle Scholar
Janzen, H. H. (2006). The soil carbon dilemma: Shall we hoard it or use it? Soil Biology and Biochemistry, 38, 419424.CrossRefGoogle Scholar
Kahle, M., Kleber, M., & Jahn, R. (2003). Retention of dissolved organic matter by illitic soils and clay fractions: influence of mineral phase properties. Journal of Plant Nutrition and Soil Science, 166, 737741.CrossRefGoogle Scholar
Kahle, M., Kleber, M., & Jahn, R. (2004). Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties. Organic Geochemistry, 35, 269276.CrossRefGoogle Scholar
Kaiser, K., & Guggenberger, G. (2003). Mineral surfaces and soil organic matter. European Journal of Soil Science, 54, 219236.CrossRefGoogle Scholar
Kleber, M., Sollins, P., & Sutton, R. (2007). A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85, 924.CrossRefGoogle Scholar
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., & Nico, P. S. (2015). Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy, 130, 1140.CrossRefGoogle Scholar
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 16231627.CrossRefGoogle ScholarPubMed
Lal, R. (2014). Soil carbon management and climate change. In Hartemink, A. E. & McSweeney, K. (Eds.), Soil Carbon, Progress in Soil Science (pp. 339361). Switzerland: Springer.CrossRefGoogle Scholar
Le Quéré, C., Raupach, M. R., Canadell, J. G., et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831836.CrossRefGoogle Scholar
Liefeld, J., & Kögel-Knabner, I. (2003). Microaggregates in agricultural soils and their size distribution determined by X-ray attenuation. European Journal of Soil Science, 54, 167174.CrossRefGoogle Scholar
Lorenz, K., & Lal, R. (2005). The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advances in Agronomy, 88, 3566.CrossRefGoogle Scholar
Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems and Environment, 139, 224231.CrossRefGoogle Scholar
Mayer, L. M., & Xing, B. (2001). Organic matter-surface area relationships in acid soils. Soil Science Society of America Journal, 65, 250258.CrossRefGoogle Scholar
McCarthy, J. F., Ilavsky, J., Jastrow, J. D., Mayer, L. M., Perfect, E., & Zhuang, J. (2008). Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochimica et Cosmochimica Acta, 72, 47254744.CrossRefGoogle Scholar
McKissock, I., Gilkes, R. J., & Walker, E. L. (1998). The reduction of water repellency by added clay is influenced by clay and soil properties. Applied Clay Science, 20, 225239.CrossRefGoogle Scholar
Michéli, E. & Spaargaren, O.C. (2012). Other systems of soil classification. Pp. 32–1–32-34 in: Handbook of Soil Sciences. Properties and Processes, 2nd edition (Huang, P.M., Li, Y. and Sumner, M.E., editors). CRC Press, Boca Raton, Florida.Google Scholar
Mikutta, R., Kleber, M., & Jahn, R. (2005). Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma, 128, 106115.CrossRefGoogle Scholar
Mikutta, R., Mikutta, C., Kalbitz, K., Scheel, T., Kaiser, K., & Jahn, R. (2007). Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochimica et Cosmochimica Acta, 71, 25692590.CrossRefGoogle Scholar
Minasny, B., Malone, B. P., McBratney, A. B., et al. (2017). Soil carbon 4 per mille. Geoderma, 292, 5986.CrossRefGoogle Scholar
Noble, A. D., Gillman, G. P., Nath, S., & Srivastava, R. J. (2001). Changes in the surface charge characteristics of degraded soils in the wet tropics through the addition of beneficiated bentonite. Australian Journal of Soil Research, 39, 9911001.CrossRefGoogle Scholar
Oades, J. M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil, 76, 319337.CrossRefGoogle Scholar
Oades, J.M. (1989). Introduction to organic matter in mineral soils. Pp. 89159 in: Minerals in Soil Environments (Dixon, J.B. and Weed, S.B., editors). 2nd edition, Soil Science Society of America Inc., Madison, Wisconsin, USA.Google Scholar
Paradelo, R., van Oort, F., Barré, P., Billiou, D., & Chenu, C. (2016). Soil organic matter stabilization at the pluri-decadal scale: Insight from bare fallow soils with contrasting physicochemical properties and macrostructures. Geoderma, 275, 4854.CrossRefGoogle Scholar
Percival, H. J., Parfitt, R. L., & Scott, N. A. (2000). Factors controlling soil carbon levels in New Zealand grasslands: Is clay content important? Soil Science Society of America Journal, 64, 16231630.CrossRefGoogle Scholar
Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical reexamination to identify the true and the false. European Journal of Soil Science, 62, 4255.CrossRefGoogle Scholar
Puget, P., Chenu, C., & Balesdent, J. (2000). Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. European Journal of Soil Science, 51, 595605.CrossRefGoogle Scholar
Rasmussen, C., Matsuyama, N., Dahlgren, R. A., Southard, R. J., & Brauer, N. (2007). Soil genesis and mineral transformation across and environmental gradient on andesitic lahar. Soil Science Society of America Journal, 71, 225237.CrossRefGoogle Scholar
Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018). Calciummediated stabilization of soil organic carbon. Biogeochemistry, 137, 2749.CrossRefGoogle Scholar
Saggar, S., Parshotam, A., Sparling, G. P., Feltham, C. W., & Hart, P. B. S. (1996). 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biology and Biochemistry, 28, 16771686.CrossRefGoogle Scholar
Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., Sanderman, J., & Macdonald, L. M. (2012). Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma, 173, 104110.CrossRefGoogle Scholar
Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., & Sanderman, J. (2013). The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma, 209, 1521.CrossRefGoogle Scholar
Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., & Chenu, C. (2010). Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology, 16, 416426.CrossRefGoogle Scholar
Sarkar, B., Singh, M., Mandal, S., Churchman, G.J., & Bolan, N.S. (2018). Clay minerals—organic matter interactions in relation to carbon stabilization in soils. Pp. 7186 in: The Future of Soil Carbon: Its Conservation and Formation (Garcia, C., Nannipieri, P., and Hernandez, T., editors). New York: Academic Press.Google Scholar
Schapel, A., Marschner, P., & Churchman, J. (2018). Clay amount and distribution influence organic carbon content in sand with subsoil clay addition. Soil & Tillage Research, 184, 253260.CrossRefGoogle Scholar
Schöning, I., Knicker, H., & Kőgel-Knabner, I. (2005). Intimate association between O/N-alkyl carbon and iron oxides in clay fractions of forest soils. Organic Geochemistry, 36, 13781390.CrossRefGoogle Scholar
Schuur, E. A. G., & Abbott, B. W. (2011). High risk of permafrost thaw. Nature, 480, 3233.CrossRefGoogle ScholarPubMed
Singh, M. (2016). Role of clay minerals in carbon stabilisation in soils. Unpublished PhD Thesis, University of South Australia.Google Scholar
Singh, M., Sarkar, B., Biswas, B., Churchman, J., & Bolan, N. S. (2016). Adsorption-desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma, 280, 4756.CrossRefGoogle Scholar
Singh, M., Sarkar, B., Biswas, B., Bolan, N. S., & Churchman, G. J. (2017a). Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture. Soil Biology and Biochemistry, 109, 95106.CrossRefGoogle Scholar
Singh, M., Sarkar, B., Hussain, S., Ok, Y. S., Bolan, N. S., & Churchman, G. J. (2017b). Influence of physico-chemical properties of soil clay fractions on the retention of dissolved organic carbon. Environmental Geochemistry and Health, 39, 13351350.CrossRefGoogle ScholarPubMed
Singh, M., Sarkar, B., Sarkar, S., Churchman, J., Bolan, N., Mandal, S., Menon, M., Purakayastha, T. J., & Beerling, D. J. (2018). Stabilization of soil organic carbon as influenced by clay mineralogy. Advances in Agronomy, 148, 3384.CrossRefGoogle Scholar
Singh, M., Sarkar, B., Bolan, N. S., Ok, Y. S., & Churchman, G. J. (2019). Decomposition of soil organic matter as affected by clay types, pedogenic oxides and plant residue addition rates. Journal of Hazardous Materials, 374, 1119.CrossRefGoogle ScholarPubMed
Six, J., Elliott, E. T., & Paustian, K. (1999). Aggregate and soil organic dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 63, 13501359.CrossRefGoogle Scholar
Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155176.CrossRefGoogle Scholar
Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79, 731.CrossRefGoogle Scholar
Smith, P., Martino, D., Cai, Z., et al. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B, 363, 789813.CrossRefGoogle ScholarPubMed
Soda, W., Noble, A. D., Suzuki, S., Simmons, R., Sindhusen, L., & Bhuthornharaj, S. (2006). Composting of acid waste bentonites and their effects on soil properties and crop biomass. Journal of Environmental Quality, 35, 22932301.CrossRefGoogle ScholarPubMed
Soil Survey Staff (1975). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. U.S. Dept. of Agriculture Soil Conservation Service, Washington, D.C.Google Scholar
Spain, A. V. (1990). Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some typical Australian rainforest soils. Australian Journal of Soil Research, 28, 825839.CrossRefGoogle Scholar
Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., & Six, J. (2007). Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 86, 1931.CrossRefGoogle Scholar
Stewart, C. E., Plante, A. F., Paustian, K., Conant, R. T., & Six, J. (2008). Soil carbon saturation: linking concept and measurable carbon pools. Soil Science Society of America Journal, 72, 379392.CrossRefGoogle Scholar
Stockmann, U., Adams, M. A., Crawford, J. W., et al. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164, 8099.CrossRefGoogle Scholar
Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141163.CrossRefGoogle Scholar
Totsche, K. U., Amelung, W., Gerzabeck, M. H., et al. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181, 104136.CrossRefGoogle Scholar
Virto, I., Moni, C., Swanston, C., & Chenu, C. (2010). Turnover of intra- and extra-aggregates organic matter at the silt scale. Geoderma, 156, 110.CrossRefGoogle Scholar
Vogel, C., Mueller, C. W., Hőschen, C., et al. (2014). Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications, 5, 2947.CrossRefGoogle ScholarPubMed
West, T. O., & Six, J. (2007). Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 80, 2541.CrossRefGoogle Scholar