Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-03T07:24:44.229Z Has data issue: false hasContentIssue false

Clay Minerals Formed During Propylitic Alteration of a Granite and Their Influence on Primary Porosity: A Multi-Scale Approach

Published online by Cambridge University Press:  01 January 2024

M. Cassiaux
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 Avenue du recteur Pineau, 86022 Poitiers cedex, France
D. Proust*
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 Avenue du recteur Pineau, 86022 Poitiers cedex, France
M. Siitari-Kauppi
Affiliation:
Laboratory of Radiochemistry, Department of Chemistry, PO Box 55, FIN-00014, University of Helsinki, Finland
P. Sardini
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 Avenue du recteur Pineau, 86022 Poitiers cedex, France
Y. Leutsch
Affiliation:
ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92290 Chatenay-Malabry, France
*
*E-mail address of corresponding author: dominique.proust@hydrasa.univ-poitiers.fr

Abstract

The porosity of a propylitized granite from Charroux (France), with no fractures or sealed fractures, increases by more than four times from the unaltered (0.3%) to the altered rock (1.4%). This evolution results from several local porosity modifications which occur at different scales in the rock: (1) at the core scale, from 10−1 to 10−5 m, where rock porosity changes as a function of rock-forming mineralogical composition; (2) at the mineral scale, from 10−3 to 10−7 m, where porosity depends both on the nature of the rock-forming mineral and its clay mineral alteration. Mineralogical and porosity data collected from the granite using a mineralogical map (after chemical staining and scanning electron microscopy images combined with autoradiographs) indicate that (1) the ferromagnesian rock-forming minerals — biotite and magnesiohornblende — act as the main porosity source in the unaltered granite, and (2) the nature of the clay minerals replacing rock-forming minerals in the altered granite appears to control the porosity value through two major alteration processes: chloritization and phengitization which affect the ferromagnesian minerals and produce non-porous chloritic and porous phengitic areas, respectively, at the studied scales. The observation that incipient porosity formation in granites is strongly linked to the pathway of ferromagnesian silicate alteration and subsequent clay mineral formation underlines the need to study parent-rock texture and mineralogy and their effects on subsequent near-surface weathering of granites.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, J.M. Leterrier, J. Cuney, M. Brouand, M. Stussi, J.M. Delaperrière, E. and Virlojeux, D., (2001) Géochronologie U-Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux-Civray (Seuil du Poitou) et de Vendée Géologie de la France 1–2 167189.Google Scholar
David, F. and Walker, L., (1990) Ion microprobe study of intragrain micropermeability in alkali feldspars Contributions to Mineralogy and Petrology 106 124128 10.1007/BF00306413.CrossRefGoogle Scholar
Duliu, O.G., (1999) Computer axial tomography in geosciences: an overview Earth-Science Reviews 48 265281 10.1016/S0012-8252(99)00056-2.CrossRefGoogle Scholar
Ferry, J.M., (2000) Patterns of mineral occurence in metamorphic rocks from the Isle of Skye, Northwest Scotland. I: granites Contributions to Mineralogy and Petrology 91 283304 10.1007/BF00413353.CrossRefGoogle Scholar
Fredrich, J.T. and Lindquist, W.B., (1997) Statistical characterization of the three-dimensional microgeometry of porous media and correlation with macroscopic transport properties International Journal of Rock Mechanics and Mining Sciences 34 34 10.1016/S1365-1609(97)80029-9.CrossRefGoogle Scholar
Freiberger, R., (2000) P-T-X conditions of the late magmatic to early postmagmatic crystallization history of intermediate to basic plutonites: The Hercynian granitoid complex of Charroux-Civray NW border of the Massif Central, France Germany University of Munich 204 pp.Google Scholar
Geraud, Y. Mazerolle, F. and Raynaud, S., (1992) Comparison between connected and overall porosity of thermally stressed granite Journal of Structural Geology 14 981990 10.1016/0191-8141(92)90029-V.CrossRefGoogle Scholar
Geraud, Y. Mazerolle, F. Raynaud, S. and Lebon, P., (1998) Crack location in granitic samples submitted to heating, low confining pressure and axial loading Geophysical Journal International 133 553567 10.1046/j.1365-246X.1998.00471.x.CrossRefGoogle Scholar
Hellmuth, K.H. Siitari-Kauppi, M. and Lindberg, A., (1993) Study of porosity and migration pathways in crystalline rock by impregnation with 14C-polymethylmethacrylate Journal of Contaminant Hydrology 13 403418 10.1016/0169-7722(93)90073-2.CrossRefGoogle Scholar
Hellmuth, K.H. Lukkarinen, S. and Siitari-Kauppi, M., (1994) Rock matrix studies with carbon 14-polymethylmethacrylate (PMMA); method development and applications Isotopenpraxis, Environmental and Health Studies 30 4760 10.1080/00211919408046712.CrossRefGoogle Scholar
Hellmuth, K.H. Siitari-Kauppi, M. Klobes, P. Meyer, K. and Goebbels, J., (1999) Imaging and analyzing rock porosity by autoradiography and Hg-porosimetry/X-ray computertomography — applications Physics and Chemistry of the Earth 24 569573 10.1016/S1464-1895(99)00081-2.CrossRefGoogle Scholar
Karacan, C.O. Grader, A.S. Halleck, P.M., Mees, F. Swennen, R. van Geet, M. and Jacobs, P., (2003) Evaluation of local porosity changes in limestone samples under triaxial stress field by using X-ray computed tomography Applications of X-ray Computed Tomography in the Geosciences London Geological Society 177189.Google Scholar
Leake, B.E. co-authors IMA, Nomenclature of amphiboles Mineralogical Magazine (1978) 42 533563 10.1180/minmag.1978.042.324.21.CrossRefGoogle Scholar
Melnyk, T.W. and Skeet, A.M.M., (1986) An improved technique for the determination of rock porosity Canadian Journal of Earth Science 23 10681074 10.1139/e86-107.CrossRefGoogle Scholar
Montgomery, C.W. and Brace, W.F., (1975) Micropores in plagioclase Contributions to Mineralogy and Petrology 52 1728 10.1007/BF00377999.CrossRefGoogle Scholar
Montoto, M. Martinez-Nistal, A. Rodriguez-Rey, A. Fernandez-Merayo, N. and Soriano, P., (1995) Microfractography of granitic rocks under confocal scanning laser microscopy Journal of Microscopy 177 138149 10.1111/j.1365-2818.1995.tb03544.x.CrossRefGoogle Scholar
Müller, G., (1967) Methods in Sedimentary Petrology New York Hafner Publication Company 283 pp.Google Scholar
Ota, K. Mori, A. Alexander, W.R. Frieg, B. and Schild, M., (2003) Influence of the mode of matrix porosity determination on matrix diffusion calculations Journal of Contaminant Hydrology 61 131145 10.1016/S0169-7722(02)00139-0.CrossRefGoogle ScholarPubMed
Putnis, A., (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms Mineralogical Magazine 66 689708 10.1180/0026461026650056.CrossRefGoogle Scholar
Revil, A. and Glover, P.W.J., (1997) Theory of ionic surface electrical conduction in porous media Physical Review B 55 17571773 10.1103/PhysRevB.55.1757.CrossRefGoogle Scholar
Sammartino, S., (1998) La caractérisation d’un matériau à faible perméabilité: mesures expérimentales et analyse d’images: application à la tonalite du sud Vienne, effet de l’altération France Thesis University of Poitiers 152 pp.Google Scholar
Sardini, P. Moreau, E. Sammartino, S. and Touchard, G., (1999) Primary mineral connectivity of polyphasic igneous rocks by high-quality digitisation and 2D image analysis Computers and Geosciences 25 599608 10.1016/S0098-3004(98)00166-6.CrossRefGoogle Scholar
Sausse, J. Jacquot, E. Fritz, B. Leroy, J. and Lespinasse, M., (2001) Evolution of crack permeability during fluid-rock interaction. Example of the Brézouard granite (Vosges, France) Tectonophysics 336 199214 10.1016/S0040-1951(01)00102-0.CrossRefGoogle Scholar
Schild, M. Siegesmund, S. Vollbrecht, A. and Mazurech, M., (2001) Characterization of granite matrix porosity and pore-space geometry by in-situ and laboratory methods Geophysical Journal International 146 111125 10.1046/j.0956-540x.2001.01427.x.CrossRefGoogle Scholar
Siitari-Kauppi, M. (2002) Development of 14C-polymethylmethacrylate method for the characterisation of low porosity media. Thesis, University of Helsinki, 156 pp.Google Scholar
Siitari-Kauppi, M. Flitsiyan, E.S. Klobes, P. Meyer, K. and Hellmuth, K.H., (1998) Progress in physical rock matrix characterization: structure of the pore space Materials Research Society 506 671678 10.1557/PROC-506-671.CrossRefGoogle Scholar
Suzuki, K. Oda, M. Yamakasis, M. and Kuwahara, T., (1998) Permeability changes in granite with cracks during immersion in hot water International Journal of Rock Mechanics and Mining Sciences 35 907921 10.1016/S0148-9062(98)00016-3.CrossRefGoogle Scholar
Vaughan, P.J. Moore, D.E. Morrow, C.A. and Byerlee, J.D., (1986) Role of cracks in progressive permeability reduction during flow of heated aqueous fluids through granite Journal of Geophysical Research 91 75177530 10.1029/JB091iB07p07517.CrossRefGoogle Scholar
Walker, F.D.L. Lee, M.R. and Parsons, I., (1995) Micropores and micropermeable texture in alkali feldspars: geochemical and geophysical implications Mineralogical Magazine 59 507536 10.1180/minmag.1995.059.396.12.CrossRefGoogle Scholar