Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T16:05:45.227Z Has data issue: false hasContentIssue false

Composite Nanoarchitectonics of LaNi0.95Fe0.05O3/Muscovite for Enhanced Photocatalytic Activity

Published online by Cambridge University Press:  01 January 2024

Li Zeng
Affiliation:
Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Tongjiang Peng
Affiliation:
Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Hongjuan Sun*
Affiliation:
Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Xiyue Zhang
Affiliation:
Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
Jingjie Yang
Affiliation:
Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

Powder-type semiconductor photocatalysts are widely applicable but their defects (e.g. easy agglomeration during preparation and recyclability in the suspension system) limit their practical application. In the current study, perovskite oxide photocatalytic material was loaded onto a muscovite substrate to overcome the problems of low stability, easy agglomeration, and difficult recovery. A photocatalytically active LaNi0.95Fe0.05O3/muscovite composite material was synthesized by a sol-gel impregnation method. Phase composition, morphology, and interfacial interaction of the composites, denoted as LNFBY-x (x: mass ratio of LNF to muscovite), were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and other analytical methods. According to the results, the particle size of LNF nanoparticles was regulated effectively by compounding with muscovite, and the agglomeration of LNF decreased. LNF nanoparticles were distributed evenly and attached in dense fashion to the surface of muscovite, thereby increasing the contact area with the reaction medium. The nanoparticles were connected to the silicon-oxygen tetrahedral sheet of the muscovite via Si–O–La, Si–O–Ni, and Si–O–Fe bonds, which increased the bonding strength between the composite components and expedited the transfer of photogenerated charge. More highly active oxygen species were produced, and a growing number of chemically active moieties (٠O2- and ٠OH) was generated in the photocatalytic reaction. LNFBY-1.00 demonstrated the best photocatalytic activity. A degradation rate of methyl orange of 99.03% was achieved after visible-light irradiation for 120 min, which decreased to 75.75% after five repeated uses, thereby indicating high stability and recycling ability. The photocatalytic LaNi0.95Fe0.05O3/muscovite composite material exhibited potential for application in environmental remediation practices.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Yael Mishael

References

Asencios, Y. J. O., Quijo, M. V., Marcos, F. C. F., Nogueira, A. E., Rocca, R. R., & Assaf, E. M. (2019). Photocatalytic activity of Nb heterostructure (NaNbO3/Na2Nb4O11) and Nb/clay materials in the degradation of organic compounds. Solar Energy, 194, 3746.CrossRefGoogle Scholar
Bao, T., Damtie, M. M., Hosseinzadeh, A., Frost, R. L., Yu, Z. M., Jin, J., & Wu, K. (2020). Catalytic degradation of P-chlorophenol by muscovite-supported nano zero valent iron composite: Synthesis, characterization, and mechanism studies. Applied Clay Science, 195, 105735105746.CrossRefGoogle Scholar
Barakat, M. A., Kumar, R., Lima, E. C., & Seliem, M. K. (2021). Facile synthesis of muscovite–supported Fe3O4 nanoparticles as an adsorbent and heterogeneous catalyst for effective removal of methyl orange: Characterisation, modelling, and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 119, 146157.CrossRefGoogle Scholar
Belver, C., Bedia, J., Álvarez-Montero, M.A., & Rodriguez, J.J. (2016). Solar photocatalytic purification of water with Cedoped TiO2/clay heterostructures. Catalysis Today, 266, 3645.CrossRefGoogle Scholar
Brundle, C. R. (1977). Oxygen adsorption and thin oxide formation at iron surfaces: An XPS/UPS study. Surface Science, 66, 581595.CrossRefGoogle Scholar
Chen, Y., Wu, Q., Bu, N., Wang, J., & Song, Y. (2019a). Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/diatomite heterojunction composite for enhanced visible-light-driven photocatalytic activity and recyclability. Chemical Engineering Journal, 373, 192202.CrossRefGoogle Scholar
Chen, Y., Wu, Q., Liu, L., Wang, J., & Song, Y. (2019b). The fabrication of floating Fe/N co-doped titania/diatomite granule catalyst with enhanced photocatalytic efficiency under visible light irradiation. Advanced Powder Technology, 30, 126135.CrossRefGoogle Scholar
Chen, Y., Wu, Q., Wang, J., & Song, Y. (2020). Visible-Light-Driven Mitigation of Rhodamine B and Disinfection of E. coli Using Magnetic Recyclable Copper–Nitrogen Co-doped Titania/Strontium Ferrite/Diatomite Heterojunction Composite. Journal of Inorganic and Organometallic Polymers and Materials, 30, 10651077.CrossRefGoogle Scholar
Dong, X., Sun, Z., Zhang, X., Li, X., & Zheng, S. (2018). Synthesis and Enhanced Solar Light Photocatalytic Activity of a C/N Co-Doped TiO2/Diatomite Composite with Exposed (001) Facets. Australian Journal of Chemistry, 71, 315324.CrossRefGoogle Scholar
Edward, S. (1982). Water in silicate glasses: an infrared spectroscopic study. Contributions to Mineralogy & Petrology, 81, 117.Google Scholar
Farmer, V. C. (1968). Infrared Spectroscopy in Clay Mineral Studies. Clay Minerals, 7, 373387.CrossRefGoogle Scholar
Fufa, P. A., Feyisa, G. B., Gultom, N. S., Kuo, D. H., Chen, X. Y., Kabtamu, D. M., & Zelekew, O. A. (2022). Visible light-driven photocatalytic activity of Cu2O/ZnO/Kaolinite-based composite catalyst for the degradation of organic pollutant. Nanotechnology, 33, 315601315612.CrossRefGoogle Scholar
Fukina, D. G., Koryagin, A. V., Koroleva, A. V., Zhizhin, E. V., Suleimanov, E. V., & Kirillova, N. I. (2021). Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. Journal of Solid State Chemistry, 300, 122235.CrossRefGoogle Scholar
Gong, C., Xiang, S., Zhang, Z., Sun, L., Ye, C., & Lin, C. (2019). Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays. Acta Physico-Chimica Sinica, 35, 616623.CrossRefGoogle Scholar
Hüfner, S., & Wertheim, G. K. (1975). Systematics of core line asymmetries in XPS spectra of Ni. Physics Letters A, 51, 301303.CrossRefGoogle Scholar
Ismael, M., & Wu, Y. (2019). A facile synthesis method for fabrication of LaFeO3/g-C3N4 nanocomposite as efficient visible-light-driven photocatalyst for photodegradation of RhB and 4-CP. New Journal of Chemistry, 43, 1378313793.CrossRefGoogle Scholar
Khaledian, H. R., Zolfaghari, P., Nezhad, P. D. K., Niaei, A., Khorram, S., & Salari, D. (2021). Surface modification of LaMnO3 perovskite supported on CeO2 using argon plasma for high-performance reduction of NO. Journal of Environmental Chemical Engineering, 9, 104581104589.CrossRefGoogle Scholar
Khan, I., Khan, I., Usman, M., Imran, M., & Saeed, K. (2020). Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. Journal of Materials Science: Materials in Electronics, 31, 89718985.Google Scholar
Khatri, A., & Rana, P. S. (2020). Visible light assisted photocatalysis of Methylene Blue and Rose Bengal dyes by iron doped NiO nanoparticles prepared via chemical co-precipitation. Physica B: Condensed Matter, 579, 411905411913.CrossRefGoogle Scholar
Kim, W. Y., Jang, J. S., Ra, E. C., Kim, K. Y., Kim, E. H., & Lee, J. S. (2019). Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane. Applied Catalysis A: General, 575, 198203.CrossRefGoogle Scholar
Landge, V. K., Sonawane, S. H., Sivakumar, M., Sonawane, S. S., Uday Bhaskar Babu, G., & Boczkaj, G. (2021). S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance. Sustainable Energy Technologies and Assessments, 45, 101194101203.CrossRefGoogle Scholar
Li, X., Tang, C., Zheng, Q., Shao, Y., & Li, D. (2017a). Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 246, 230236.CrossRefGoogle Scholar
Li, X., Yan, X., Zuo, S., Lu, X., Luo, S., Li, Z., Yao, C., & Ni, C. (2017b). Construction of LaFe1–xMnxO3/attapulgite nanocomposite for photo-SCR of NOx at low temperature. Chemical Engineering Journal, 320, 211221.CrossRefGoogle Scholar
Li, X., Peng, K., Chen, H., & Wang, Z. (2018). TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Scientific Reports, 8, 11663.CrossRefGoogle ScholarPubMed
Li, Y., Sun, H., Peng, T., You, H., Qin, Y., & Zeng, L. (2019). Effects of muscovite matrix on photocatalytic degradation in TiO2/muscovite nanocomposites. Applied Clay Science, 179, 105155105164.CrossRefGoogle Scholar
Lin, L., Song, Y., Bo, J., Wang, K., & Qian, Z. (2017). A novel oxygen carrier for chemical looping reforming: LaNiO3 pe-rovskite supported on montmorillonite. Energy, 131, 5866.Google Scholar
Liu, H., Yi, Y., Qin, Z., Wu, Y., Li, L., Chu, B., Jin, G., Li, R., Tong, Z., Dong, L., & Li, B. (2019). In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study of NO + CO Reaction on La0.8Ce0.2Mn1–xFexO3 Perovskites: Changes in Catalytic Properties Caused by Fe Incorporation. Industrial & Engineering Chemistry Research, 58, 90659074.CrossRefGoogle Scholar
Maeda, K., Eguchi, M., & Oshima, T. (2014). Perovskite Oxide Nanosheets with Tunable Band-Edge Potentials and High Photocatalytic Hydrogen-Evolution Activity. Angewandte Chemie International Edition, 53, 1316413168.CrossRefGoogle ScholarPubMed
Maridevaru, M. C., Wu, J. J., Viswanathan Mangalaraja, R., & Anandan, S. (2020). Ultrasonic-Assisted Preparation Of Perovskite-Type Lanthanum Nickelate Nanostructures and Its Photocatalytic Properties. ChemistrySelect, 5, 79477958.CrossRefGoogle Scholar
Peng, F., Ni, Y., Zhou, Q., Kou, J., Lu, C., & Xu, Z. (2018). New g-C3N4 based photocatalytic cement with enhanced visible-light photocatalytic activity by constructing muscovite sheet/SnO2 structures. Construction and Building Materials, 179, 315325.CrossRefGoogle Scholar
Peng, K., Fu, L., Yang, H., & Ouyang, J. (2016). Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Scientific Reports, 6, 1972319733.CrossRefGoogle ScholarPubMed
Purohit, S., Yadav, K. L., & Satapathi, S. (2021). Bandgap Engineering in a Staggered-Type Oxide Perovskite Heterojunction for Efficient Visible Light-Driven Photocatalytic Dye Degradation. Langmuir, 37, 34673476.CrossRefGoogle Scholar
Salam, M. A., Abukhadra, M. R., & Mostafa, M. (2020). Effective decontamination of As(V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism. Environmental Science and Pollution Research, 27, 1324713260.CrossRefGoogle Scholar
Schlapbach, L. (1981). XPS/UPS study of the oxidation of La and LaNi5 and of the electronic structure of LaNi5. Solid State Communications, 38, 117123.CrossRefGoogle Scholar
Shao, P., Siao, Y., Lai, Y., Hsieh, P., Tsao, C., Lu, Y., Chen, Y., Hsu, Y., & Chu, Y. (2021). Flexible BiVO4/WO3/ITO/Muscovite Heterostructure for Visible-Light Photoelectrochemical Photoelectrode. ACS Applied Materials & Interfaces, 13, 2118621193.CrossRefGoogle Scholar
Shi, H., Li, X., Xia, J., Lu, X., Zuo, S., Luo, S., & Yao, C. (2017). Sol-gel Synthesis of LaBO3/Attapulgite (B=Mn, Fe, Co, Ni) Nanocomposite for NH3-SCR of NO at Low Temperature. Journal of Inorganic and Organometallic Polymers and Materials, 27, 166172.CrossRefGoogle Scholar
Tahir, M., Tahir, B., Zakaria, Z. Y., & Muhammad, A. (2019). Enhanced photocatalytic carbon dioxide reforming of methane to fuels over nickel and montmorillonite supported TiO2 nanocomposite under UV-light using monolith photoreactor. Journal of Cleaner Production, 213, 451461.CrossRefGoogle Scholar
Touaa, N. D., Bouberka, Z., Gherdaoui, C. E., Supiot, P., Roussel, P., Pierlot, C., & Maschke, U. (2020). Titanium and iron-modified delaminated muscovite as photocatalyst for enhanced degradation of Tetrabromobisphenol A by visible light. Functional Materials Letters, 13, 2051008.CrossRefGoogle Scholar
Tun, P., Wang, K., Naing, H., Wang, J., & Zhang, G. (2019). Facile preparation of visible-light-responsive kaolin-supported Ag@AgBr composites and their enhanced photo-catalytic properties. Applied Clay Science, 175, 7685.CrossRefGoogle Scholar
Wang, X., Mu, B., Hui, A., & Wang, A. (2019). Comparative study on photocatalytic degradation of Congo red using different clay mineral/CdS nanocomposites. Journal of Materials Science: Materials in Electronics, 30, 53835392.Google Scholar
Xu, B., Maimaiti, H., Wang, S., Awati, A., Wang, Y., Zhang, J., & Chen, T. (2019). Preparation of coal-based graphene oxide/SiO2 nanosheet and loading ZnO nanorod for photocatalytic Fenton-like reaction. Applied Surface Science, 498, 143835143846.CrossRefGoogle Scholar
Yan, C., Qiong, W., Li, L., Jun, W., & Ytao, S. (2019). The fabrication of self-floating Ti3+/N co-doped TiO2/diatomite granule catalyst with enhanced photocatalytic performance under visible light irradiation. Applied Surface Science, 467-468, 514525.Google Scholar
Yang, X., Ke, X., Yang, D., Liu, J., Guo, C., Frost, R., Su, H., & Zhu, H. (2010). Effect of ethanol washing of titania clay mineral composites on photocatalysis for phenol decomposition. Applied Clay Science, 49, 4450.CrossRefGoogle Scholar
Ye, Y., Yang, H., Zhang, H., & Jiang, J. (2020). A promising Ag2CrO4/LaFeO3 heterojunction photocatalyst applied to photo-Fenton degradation of RhB. Environmental Technology, 41, 14861503.CrossRefGoogle ScholarPubMed
Zhong, W., Jiang, T., Dang, Y., He, J., Chen, S., Kuo, C., Kriz, D., Meng, Y., Meguerdichian, A. G., & Suib, S. L. (2018). Mechanism studies on methyl orange dye degradation by perovskite-type LaNiO3-δ under dark ambient conditions. Applied Catalysis A: General, 549, 302309.CrossRefGoogle Scholar
Zhou, S., Lv, J., Guo, L. K., Xu, G. Q., Wang, D. M., Zheng, Z. X., & Wu, Y. C. (2012). Preparation and photocatalytic properties of N-doped nano-TiO2/muscovite composites. Applied Surface Science, 258, 61366141.CrossRefGoogle Scholar
Zhu, W., Chen, X., Liu, Z., & Liang, C. (2020). Insight into the Effect of Cobalt Substitution on the Catalytic Performance of LaMnO3 Perovskites for Total Oxidation of Propane. The Journal of Physical Chemistry C, 124, 1464614657.CrossRefGoogle Scholar