Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T09:09:21.664Z Has data issue: false hasContentIssue false

Crystal Structure Refinement and Mössbauer Spectroscopy of an Ordered, Triclinic Clinochlore

Published online by Cambridge University Press:  28 February 2024

Joseph R. Smyth
Affiliation:
Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0250
M. Darby Dyar
Affiliation:
Department of Geology and Astronomy, West Chester University, West Chester, Pennsylvania 19383
Howard M. May
Affiliation:
US Geological Survey, Water Resources Division, 3215 Marine Street, Boulder, Colorado 80303
Owen P. Bricker
Affiliation:
US Geological Survey, Reston, Virginia 22092
James G. Acker
Affiliation:
US Geological Survey, Reston, Virginia 22092

Abstract

The crystal structure of a natural, ordered IIb-4 triclinic clinochlore has been refined in space group C1̄ from 4282 unique X-ray intensity measurements of which 3833 are greater than 3 times the statistical counting error (3σ). Unit cell parameters are a = 5.3262(6) Å; b = 9.226(1) Å; c = 14.334(3) Å; α = 90.56(2)°; β = 97.47(2)°; and γ = 89.979(9)°, which represents the greatest deviation from mono-clinic symmetry yet recorded for a triclinic chlorite. The final weighted R is 0.059 for reflections with I > 3σ and 0.064 for all reflections. The chemical formula is (Mg0.966Fe0.034)MI(Mg0.962Fe0.038)M22(Si2.96Al1.04)O10 (OH)2(Mg0.996Fe0.004)M32(Al0.841FeIII0.102Cr0.004Ti0.004)M4(OH)6, which is consistent with electron microprobe (EMP), wet chemical analyses, Mössbauer spectroscopy and X-ray structure refinement. The high degree of ordering of the divalent versus trivalent octahedral cations in the interlayer is noteworthy, with FeIII and Al in M4 and virtually no Fe in M3. In the 2:1 layer, M1 and M2 each contain similar amounts of Fe. The 2 tetrahedral sites have nearly identical mean oxygen distances and volumes, and thus show no evidence of long-range cation ordering.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aramu, F. Maxia, F. and Delunas, A., 1989 Mössbauer spectroscopy of talc minerals Il Nuovo Cimento 11 6 891896 10.1007/BF02455294.CrossRefGoogle Scholar
Bailey, S.W., 1988 Chlorites: Structures and crystal chemistry Rev Mineral 19 347398.Google Scholar
Ballet, O. Coey, J.M.D. and Burke, K.J., 1985 Magnetic properties of sheet silicates; 2:1:1 layer minerals Phys Chem Miner 12 370378 10.1007/BF00654348.CrossRefGoogle Scholar
Blaauw, C. Stroink, G. and Leiper, W., 1980 Mössbauer analysis of talc and chlorite J de Phys, Colloque 41 411412 10.1051/jphyscol:19801159.CrossRefGoogle Scholar
Borggaard, O.K. Lindgreen, H.B. and Mørup, S., 1982 Oxidation and reduction of structural iron in chlorite at 480°C Clays Clay Miner 30 353364 10.1346/CCMN.1982.0300506.CrossRefGoogle Scholar
Christofides, G. Thimiatis, G. Koroneos, A. Sklavounos, S. and Eleftheriadis, G., 1994 Mineralogy and chemistry of Cr-chlorites associated with chromites from Vavdos and Vasilika ophiolite complexes (Chalkidiki, Macedonia, N. Greece) Chemie der Erde, Geochem 54 151166.Google Scholar
Clark, F.W. and Schneider, E.A., 1890 Experiments upon the constitution of the natural silicates Am J Sci 40 406415.Google Scholar
Coey, J.M.D., Hrynkiewicz, A.Z. and Sawicki, J.A., 1975 The clay minerals: Use of the Mössbauer effect to characterize them and study their transformation Proc Int Conf Mössbauer Spectroscopy, vol. 2 Krakowie Akademia Gorniczo-Hutnicza 333354.Google Scholar
Cromer, D.T. and Mann, J., 1968 X-ray scattering factors computed from numerical Hartree-Fock wave functions Acta Crystallogr A24 321324 10.1107/S0567739468000550.CrossRefGoogle Scholar
DeGrave, E. Vandenbruwaene, J. and Van Bockstael, M., 1987 57Fe Mössbauer spectroscopic analysis of chlorite Phys Chem Miner 15 173180 10.1007/BF00308781.CrossRefGoogle Scholar
de Parseval, P. Foumes, L. Fortune, J.-P. Moine, B. and Ferret, J., 1991 Distribution du fer dans les chlorites par spectrométrie Mössbauer (57Fe): Fe3+ Dans les chlorites du gisement de talc-chlorite de Trimouns (Pyrénées, France), Acad Sci Paris 312(II) 13211326.Google Scholar
Dyar, M.D., 1984 Precision and interlaboratory reproducibility of measurements of the Mössbauer effect in minerals Am Mineral 69 11271144.Google Scholar
Dyar, M.D., 1990 Mössbauer spectra of biotite from metapelites Am Mineral 75 656666.Google Scholar
Ericsson, T. Waeppling, R. and Punkivi, K., 1977 Mössbauer spectroscopy applied to clay and related minerals Geologiska Föreningens i Stockholm Förhandlinger 99 229244 10.1080/11035897709455018.CrossRefGoogle Scholar
Finger, L.W. and Prince, E., 1975 A system of FORTRAN IV computer programs for crystal structure computations Nat Bur Standards Technical Note 854 .CrossRefGoogle Scholar
Goodman, B.A. and Bain, D.C., 1978 Mössbauer spectra of chlorites and their decomposition products Proc Int Clay Conf 1978 Oxford. Amsterdam Elsevier 6574.Google Scholar
Grant, C.A., 1995 Sources of experimental and analytical error in measurements of the Mössbauer effect in amphibole [Ph.D. thesis] Eugene, OR Univ of Oregon.Google Scholar
Gregori, D.A. and Mercader, R.C., 1994 Mössbauer study of some Argentinean chlorites Hyperfine Interact 83 495498 10.1007/BF02074324.CrossRefGoogle Scholar
Joswig, W. and Feuss, H., 1989 Refinement of a one-layer triclinic chlorite Clays Clay Miner 38 216218 10.1346/CCMN.1990.0380215.CrossRefGoogle Scholar
Joswig, W. Feuss, H. and Mason, S.A., 1989 Neutron diffraction study of a one-layer monoclinic chlorite Clays Clay Miner 37 511514 10.1346/CCMN.1989.0370602.CrossRefGoogle Scholar
Joswig, W. Feuss, H. Rothbauer, R. Takeuchi, Y. and Mason, S.A., 1980 A neutron diffraction study of a one-layer triclinic chlorite (penninite) Am Mineral 65 349352.Google Scholar
Kodama, H. Longworth, G. and Townsend, M.G., 1982 A Mössbauer investigation of some chlorites and their oxidation products Can Mineral 20 585592.Google Scholar
Komadel, P. and Stucki, J.W., 1988 The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: III. A rapid photochemical method Clays Clay Miner 36 379381 10.1346/CCMN.1988.0360415.CrossRefGoogle Scholar
Long, G.J. Cranshaw, T.E. and Longworth, G., 1984 The ideal Mössbauer absorber thickness Mössbauer Effect Reference and Data J 6 4249.Google Scholar
Nelson, D.O. and Guggenheim, S., 1993 Inferred limitations to the oxidation of Fe in chlorite: A high temperature single-crystal X-ray study Am Mineral 78 11971207.Google Scholar
Pal, T. Dipankar, D. and Mitra, S., 1992 “Fe Mössbauer investigation of naturally oxidized chlorite Hyperfine Interact 73 313321 10.1007/BF02418606.CrossRefGoogle Scholar
Phillips, T.L. Loveless, J.K. and Bailey, S.W., 1980 Cr3+ coordination in chlorites: A structural study of ten chromian chlorites Am Mineral 65 112122.Google Scholar
Raclavská, H. and Raclavský, K., 1988 Chlorites of the Desná Unit, Hrubý Jeseník Mountains 10th Conf Clay Mineral Petrol; Ostraca 113118.Google Scholar
Rule, A.C. and Bailey, S.W., 1989 Refinement of the crystal structure of a monoclinic ferroan clinochlore Clays Clay Miner 35 129138 10.1346/CCMN.1987.0350205.CrossRefGoogle Scholar
Stucki, J.W., 1981 The quantitative assay of minerals for Fe2+ and Fe,+ using 1,10-phenanthroline: II. A photochemical method Soil Sci Soc Am J 45 638641 10.2136/sssaj1981.03615995004500030040x.CrossRefGoogle Scholar
Stucki, J.W. and Anderson, W.L., 1981 The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: I. Sources of variability Soil Sci Soc Am J 45 633637 10.2136/sssaj1981.03615995004500030039x.CrossRefGoogle Scholar
Taylor, G.L. Ruotsala, A.P. and Keeling, R.O. Jr., 1968 Analysis of iron in layer silicates by Mössbauer spectroscopy Clays Clay Miner 16 381391 10.1346/CCMN.1968.0160507.CrossRefGoogle Scholar
Townsend, M.G. Longworth, G. and Kodama, H., 1986 Magnetic interaction at low temperature in chlorite and its products of oxidation: A Mössbauer investigation Can Mineral 24 105115.Google Scholar
Walker, J.R. and Bish, D.L., 1992 Application of Rietveld refinement techniques to a disordered IIb Mg-chamosite Clays Clay Miner 40 319322 10.1346/CCMN.1992.0400311.CrossRefGoogle Scholar
Welch, M.D. Barras, J. and Klinowski, J., 1995 A multinuclear NMR study of clinochlore Am Mineral 80 441447 10.2138/am-1995-5-603.CrossRefGoogle Scholar
Zheng, H. and Bailey, S.W., 1989 Structures of intergrown triclinic and monoclinic IIb chlorites from Kenya Clays Clay Miner 37 308318 10.1346/CCMN.1989.0370403.CrossRefGoogle Scholar