Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T21:03:15.430Z Has data issue: false hasContentIssue false

Diagenesis and Metamorphism of Clay Minerals in the Helvetic Alps of Eastern Switzerland

Published online by Cambridge University Press:  28 February 2024

Hejing Wang*
Affiliation:
Mineralogisch-Petrographisches Institut der Universität, Bernoullistrasse 30, CH-4056 Basel, Switzerland
Martin Frey
Affiliation:
Mineralogisch-Petrographisches Institut der Universität, Bernoullistrasse 30, CH-4056 Basel, Switzerland
Willem B. Stern
Affiliation:
Mineralogisch-Petrographisches Institut der Universität, Bernoullistrasse 30, CH-4056 Basel, Switzerland
*
2Present address: Department of Geology, Peking University, Beijing 100871, P.R. China

Abstract

Helvetic sediments from the northern margin of the Alps in eastern Switzerland were studied by clay mineralogical methods. Based on illite “crystallinity” (Kübier index), the study area is divided into diagenetic zone, anchizone and epizone. Data on the regional distribution of the following index minerals are presented: smectite, kaolinite/smectite mixed-layer phase, kaolinite, pyrophyllite, paragonite, chloritoid, glauconite and stilpnomelane. Isograds for kaolinite/pyrophyllite and glauconite/stilpnomelane are consistent with illite “crystallinity” zones. Using the ordering of mixed-layer illite/smectite, the diagenetic zone is subdivided into three zones. The illite domain size distribution was analyzed using the Warren-Averbach technique. The average illite domain size does not change much within the diagenetic zone, but shows a large increase within the anchizone and epizone. The average illite b0 value indicates conditions of an intermediate-pressure facies series.

The Helvetic nappes show a general increase in diagenetic/metamorphic grade from north to south, and within the Helvetic nappe pile, grade increases from tectonically higher to lower units. However, a discontinuous inverse diagenetic/metamorphic zonation was observed along the Glarus thrust, indicating 5–10 km of offset after metamorphism. In the study area, incipient metamorphism was a late syn- to post-nappe-forming event.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkai, P.. 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as examplified by Palaeozoic and Mesozoic rocks of northeast Hungary. J Metamorph Geol 9: 723734.CrossRefGoogle Scholar
Bailey, S.W.. 1988. X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite. Clays & Clay Miner 36: 193213.CrossRefGoogle Scholar
Balzer, D. and Ledbetter, H.. 1993. Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. J Appl Cryst 26: 97103.CrossRefGoogle Scholar
Borg, I.Y. and Smith, D.K.. 1969. Calculated X-ray powder patterns for silicate minerals. Mem Geol Soc Am 122: 896 p.Google Scholar
Breitschmid, A.. 1982. Diagenese und schwache Metamorphose in den sedimentären Abfolgen der Zentralschweizer Alpen. Eclogae Geol Helv 75: 331380.Google Scholar
Briegel, U.. 1972. Geologie der östlichen Alviergruppe, unter besonderer Berücksichtigung der Drusberg-und Schrattenkalkformation. Eclogae Geol Helv 65: 425483.Google Scholar
Burger, H.. 1982. Tonmineralogische und sedimentpetrographische Untersuchungen in der untersten Kreide des östlichen Helvetikums. Schweiz Mineral Petrogr Mitt 62: 369414.Google Scholar
Bürgisser, H.M. and Felder, T.E.. 1974. Zur Geologie der Südab-dachung der Segnas-Ringel-Gruppe (Vorderrheintal, Graubünden). Eclogae Geol Helv 67: 457467.Google Scholar
Eberl, D.D., Srodon, J., Kralik, M., Taylor, B.E. and Peterman, Z.E.. 1990. Ostwald ripening of clays and metamorphic minerals. Science 248: 474477.CrossRefGoogle Scholar
Erdelbrock, K.. 1994. Diagenese und schwache Metamorphose im Helvetikum der Ostschweiz (Inkohlung und Illit-“Kristallinität”). Diss Rhein-Westf Techn Hochschule Aachen 219 S.Google Scholar
Erdelbrock, K., Wolf, M., Krumm, H. and Frey, M.. 1993. Vitrinite reflectance data from a transect through the Helvetic Zone of eastern Switzerland. TERRA abstracts, Suppl. No 1 to TERRA nova 5: 415.Google Scholar
Ergun, S.. 1968. Direct method for unfolding convolution products—its application to X-ray scattering intensities. J Appl Cryst 1: 1923.CrossRefGoogle Scholar
Essene, E.J.. 1989. The current status of thermobarometry in metamorphic rocks. In: Daly, J.S., Cliff, R.A., Yardley, B.W.D., editors. Evolution of Metamorphic Belts. Geol. Soc. Spec. Pub. London: Geol Soc 43: 144.CrossRefGoogle Scholar
Frey, M.. 1970. The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentol 15: 261279.CrossRefGoogle Scholar
Frey, M.. 1986. Very low-grade metamorphism of the Alps—an introduction. Schweiz Mineral Petro Mitt 66: 1327.Google Scholar
Frey, M.. 1987a. Very low-grade metamorphism of clastic sedimentary rocks. In: Frey, M., editor. Low Temperature Metamorphism. Glasgow: Blackie. 958.Google Scholar
Frey, M.. 1987b. The reaction-isograd kaolinite + quartz = pyrophyllite + H2O, Helvetic Alps, Switzerland. Schweiz Mineral Petro Mitt 67: 111.Google Scholar
Frey, M.. 1988. Discontinuous inverse metamorphic zonation, Glarus Alps, Switzerland: evidence from illite “crystallinity” data. Schweiz Mineral Petro Mitt 68: 171183.Google Scholar
Frey, M., Hunziker, J.C., Roggwiller, P. and Schindler, C.. 1973. Progressive niedriggradige Metamorphose glaukonitführender Horizonte in den helvetischen Alpen der Ostschweiz. Contrib Mineral Petrol 39: 185218.CrossRefGoogle Scholar
Frey, M. and Wieland, B.. 1975. Chloritoid in autochthonparau-tochthonen Sedimenten des Aarmassivs. Schweiz Mineral Petro Mitt 55: 407418.Google Scholar
Handschin, R. and Stern, W.B.. 1989. Preparation and analysis of microsamples for X-ray diffraction and -fluorescence. SIEMENS Anal Appl Note 319.Google Scholar
Hayes, J.B.. 1970. Polytypism of chlorite in sedimentary rocks. Clays & Clay Miner 18: 285306.CrossRefGoogle Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiller, P. and Schwander, H.. 1986. The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92: 157180.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E.. 1974. X-Ray Diffraction Procedures, 2nd ed. New York: Wiley. 966p.Google Scholar
Kübler, B.. 1967. La cristallinité de l'illite et les zones tout à fait supérieures du métamorphisme. Etages tectoniques, Colloque à Neuchâtel 1966. Neuchâtel, Suisse: A la Baconnière. 105121.Google Scholar
Kübler, B.. 1968. Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bull Cent Rech Pau-SNPA 2: 385397.Google Scholar
Kübler, B., Pitton, J.-L., Héroux, Y., Charollais, J. and Weidmann, M.. 1979. Sur le pouvoir réflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et des nappes préalpines, helvétiques et penniques. Eclogae Geol Helv 72: 347373.Google Scholar
Langford, J.I.. 1978. A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J Appl Cryst 11: 1014.CrossRefGoogle Scholar
Lanson, B. and Kübler, B.. 1994. Experimental determinations of the coherent scattering domain size distribution of natural mica-like phases with the Warren-Averbach technique. Clays & Clay Minerals 42: 489494.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C.. 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford, New York: Oxford University Press. 332p.Google Scholar
Niggli, E. and Niggli, C.R.. 1965. Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen (Stilpnomelan, Alkali-Amphibol, Chloritoid, Staurolith, Disthen, Sillimanit). Eclogae Geol Helv 58: 335368.Google Scholar
Ouwehand, P.. 1987. Die Garschella-Formation (“Helvetischer Gault”, Aptian-Cenomanian) der Churfirsten-Alvier Region (Ostschweiz), Sedimentologie, Phosphoritgenese, Stratigraphie. Mitt Geol Inst ETH u Univ Zürich NF 275.Google Scholar
Padan, A., Kisch, H.J. and Shagam, R.. 1982. Use of the lattice parameter bo of dioctahedral illite/muscovite for the characterization of P/T gradients of incipient metamorphism. Contrib Mineral Petrol 79: 8595.CrossRefGoogle Scholar
Pfiffner, O.A.. 1986. Evolution of the north Alpine foreland basin in the Central Alps. Spec Publ Int Assoc Sedimentol 8: 219228.Google Scholar
Pfiffner, O.A.. 1982. Deformation mechanisms and flow regimes in limestones from the Helvetic zone of the Swiss Alps. J Struct Geol 4: 429442.CrossRefGoogle Scholar
Pfiffner, O.A., Frei, W., Valasek, P., Stäuble, M., Levato, L., DuBois, L., Schmid, S.M. and Smithson, S.B.. 1990. Crustal shortening in the Alpine Orogen: results from deep seismic reflection profiling in the eastern Swiss Alps, line NFP 20-east. Tectonics 9: 13271355.CrossRefGoogle Scholar
Pollastro, R.M.. 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays & Clay Miner 41: 119133.CrossRefGoogle Scholar
Radoslovich, E.W. and Norrish, K.. 1962. The cell dimensions and symmetry of layer-lattice silicates: I. Some structural consideration. Amer Mineral 47: 599617.Google Scholar
Reynolds, R.C.. 1985. NEWMOD, a computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. Hanover, N.H.: R. C. Reynolds, 8 Brook Rd.Google Scholar
Sassi, F.P. and Scolari, A.. 1974. The bo value of the potassium white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contrib Mineral Petrol 45: 143152.CrossRefGoogle Scholar
Scherrer, P.. 1918. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachr Math Phys 2: 98100.Google Scholar
Spicher, A.. 1980. Tektonische Karte der Schweiz. Schweiz geol komm 1: 500 000.Google Scholar
Stern, W.B.. 1991. Preparation and cell refinement of mica microsamples. Schweiz Mineral Petro Mitt 71: 151159.Google Scholar
Stokes, A.R.. 1948. A numerical Fourier-analysis method for the correction of width and shapes of lines on X-ray powder photographs. Proc Phys Soc 61: 382391.CrossRefGoogle Scholar
Trümpy, R.. 1980. Geology of Switzerland, Part A. Basel, New York: Wepf & Co. Publishers. 104p.Google Scholar
Velde, B.. 1985. Clay minerals, a physico-chemical explanation of their occurrence. Dev. Sedimentol. Elsevier, Amsterdam -Oxford-New York-Tokyo 40: 427p.Google Scholar
Walker, J.R.. 1993. Chlorite polytype geothermometry. Clays & Clay Miner 41: 260267.CrossRefGoogle Scholar
Warr, L.N. and Rice, A.H.N.. 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Metamorph Geol 12: 141152.CrossRefGoogle Scholar
Warren, B.E. and Averbach, B.L.. 1950. The effect of cold-work distortion on X-ray patterns. J Appl Phys 21: 595599.CrossRefGoogle Scholar
Yang, C. and Hesse, R.. 1991. Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians. Clay Miner 26: 211231.CrossRefGoogle Scholar