Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T21:08:44.971Z Has data issue: false hasContentIssue false

Diffusion of Na and Cs in montmorillonite

Published online by Cambridge University Press:  01 January 2024

Georg Kosakowski*
Affiliation:
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Sergey V. Churakov
Affiliation:
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Tres Thoenen
Affiliation:
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
*
* E-mail address of corresponding author: georg.kosakowski@psi.ch

Abstract

The state and dynamics of water and cations in pure and mixed Na-Cs-montmorillonite as a function of the interlayer water content were investigated in the present study, using Monte Carlo and classical, molecular-dynamics methods. While highly idealized, the simulations showed that the swelling behavior of hetero-ionic Na-Cs-montmorillonite is comparable to the swelling of a homo-ionic Na- or Cs-montmorillonite. The mixed Na-Cs-montmorillonite is characterized by intermediate interlayer distances compared to homo-ionic Na- and Cs-montmorillonites. Dry, hetero-ionic Na-Cs-montmorillonite is characterized by a symmetric sheet configuration, as is homo-ionic Cs-montmorillonite.

We found that at low degrees of hydration the absolute diffusion coefficient of Cs+ is less than for Na+, whereas at greater hydration states the diffusion coefficient of Cs+ is greaterthan for Na+. An analysis of the relative diffusion coefficients (the ratio between the diffusion coefficient of an ion in the interlayer and its diffusion coefficient in bulk water) revealed that water and Na+ are always less retarded than Cs+. With large interlayer water contents, tetralayer or more, Na+ ions preferentially form outer-sphere complexes. The mobility perpendicular to the clay surface is limited and the diffusion is equivalent to two-dimensional diffusion in bulk water. In contrast, Cs+ ions preferentially form ‘inner-sphere complexes’ at all hydration states and their two-dimensional diffusion coefficient is less than in bulk water.

The question remains unanswered as to why experimentally derived relative diffusion coefficients of Cs+ in the interlayer of clays are about 20 times less than those we obtained by classical molecular dynamics studies.

Type
Research Article
Copyright
Copyright © 2008, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arab, M. Bougeard, D. and Smirnov, K.S., 2003 Structure and dynamics of the interlayerwaterin an uncharged 2:1 clay Physical Chemistry Chemical Physics 5 46994707 10.1039/b307486b.CrossRefGoogle Scholar
Arab, M. Bougeard, D. and Smirnov, K.S., 2004 Structure and dynamics of interlayer species in a hydrated Zn-vermiculite. A molecular dynamics study Physical Chemistry Chemical Physics 6 24462453 10.1039/b400554f.CrossRefGoogle Scholar
Berend, I. Cases, J.M. Francois, M. Uriot, J.P. Michot, L. Masion, A. and Thomas, F., 1995 Mechanism of adsorption and desorption of water-vapor by homoionic montmorillonites. 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms Clays and Clay Minerals 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Besson, G. Glaeser, R. and Tchoubar, C., 1983 Cesium — a means of determining the structure of smectites Clay Minerals 18 1119 10.1180/claymin.1983.018.1.02.CrossRefGoogle Scholar
Boek, E.S. and Sprik, M., 2003 Ab initio molecular dynamics study of the hydration of a sodium smectite clay Journal of Physical Chemistry B 107 32513256 10.1021/jp0262564.CrossRefGoogle Scholar
Boek, E.S. Coveney, P.V. and Skipper, N.T., 1995 Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor Journal of the American Chemical Society 117 1260812617 10.1021/ja00155a025.CrossRefGoogle Scholar
Boek, E.S. Coveney, P.V. and Skipper, N.T., 1995 Molecular modeling of clay hydration: A study of hysteresis loops in the swelling curves of sodium montmorillonites Langmuir 11 46294631 10.1021/la00012a008.CrossRefGoogle Scholar
Bourg, I.C., 2004 Tracer diffusion of water and inorganic ions in compacted saturated sodium bentonite Berkeley University of California 368 pp.Google Scholar
Bourg, I.C. Bourg, A.C.M. and Sposito, G., 2003 Modeling diffusion and adsorption in compacted bentonite: A critical review Journal of Contaminant Hydrology 61 293302 10.1016/S0169-7722(02)00128-6.CrossRefGoogle ScholarPubMed
Bourg, I.C. Sposito, G. and Bourg, A.C.M., 2006 Tracer diffusion in compacted, water-saturated bentonite Clays and Clay Minerals 54 363374 10.1346/CCMN.2006.0540307.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 2000 A generalized sorption model for the concentration dependent uptake of cesium by argillaceous rocks Journal of Contaminant Hydrology 42 141163 10.1016/S0169-7722(99)00094-7.CrossRefGoogle Scholar
Brigatti, M.F. Galan, E. Theng, B.K.G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Structures and mineralogy of clay minerals Handbook of Clay Science Amsterdam Elsevier 1968 10.1016/S1572-4352(05)01002-0.CrossRefGoogle Scholar
Calvet, R., 1973 Hydration of montmorillonite and diffusion of exchangeable cations. 2. Diffusion of exchangeable cations in montmorillonite Annales Agronomiques 24 135217.Google Scholar
Chavez-Paez, M. de Pablo, L. and de Pablo, J.J., 2001 Monte Carlo simulations of Ca-montmorillonite hydrates Journal of Chemical Physics 114 1094810953 10.1063/1.1374536.CrossRefGoogle Scholar
Chavez-Paez, M. Van Workum, K. de Pablo, L. and de Pablo, J.J., 2001 Monte Carlo simulations of Wyoming sodium montmorillonite hydrates Journal of Chemical Physics 114 14051413 10.1063/1.1322639.CrossRefGoogle Scholar
Cygan, R.T. Liang, J.-J. and Kalinichev, A.G., 2004 Molecularmodels of hydroxide, oxyhydroxide, and clay phases and the development of a general force field Journal of Physical Chemistry B 108 12551266 10.1021/jp0363287.CrossRefGoogle Scholar
de Carvalho, R.J.F.L. and Skipper, N.T., 2001 Atomistic computer simulation of the clay-fluid interface in colloidal laponite Journal of Chemical Physics 114 37273733 10.1063/1.1343839.CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussman, J., 1992 An Introduction to the Rock-Forming Minerals Harlow, Essex, England Longman Scientific & Technical 712 pp.Google Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties American Mineralogist 90 13581374 10.2138/am.2005.1776.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. Geoffroy, N. Jacquot, E. and Drits, V.A., 2007 Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location American Mineralogist 92 17311743 10.2138/am.2007.2273.CrossRefGoogle Scholar
Flury, M. Gimmi, T., Dane, J.H. and Topp, G.C., 2002 Solute diffusion Methods of Soil Analysis, Part 4 — Physical Methods Madison, Wisconsin, USA Soil Science Society of America 13231351.Google Scholar
Flyvbjerg, H. and Petersen, H.G., 1989 Error-estimates on averages of correlated data Journal of Chemical Physics 91 461466 10.1063/1.457480.CrossRefGoogle Scholar
Fu, M.H. Zhang, Z.Z. and Low, P.F., 1990 Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water — hysteresis Clays and Clay Minerals 38 485492 10.1346/CCMN.1990.0380504.CrossRefGoogle Scholar
Gonzalez, F. Juranyi, F. Van Loon, L. and Gimmi, T., 2007 Translational diffusion of water in compacted clay systems European Physical Journal-Special Topics 141 6568 10.1140/epjst/e2007-00019-9.CrossRefGoogle Scholar
Greathouse, J.A. Refson, K. and Sposito, G., 2000 Molecular dynamics simulation of watermobility in magnesium-smectite hydrates Journal of the American Chemical Society 122 1145911464 10.1021/ja0018769.CrossRefGoogle Scholar
Hensen, E.J.M. and Smit, B., 2002 Why clays swell Journal of Physical Chemistry B 106 1266412667 10.1021/jp0264883.CrossRefGoogle Scholar
Hensen, E.J.M. Tambach, T.J. Bliek, A. and Smit, B., 2001 Adsorption isotherms of water in Li-, Na-, and K-montmorillonite by molecular simulation Journal of Chemical Physics 115 33223329 10.1063/1.1386436.CrossRefGoogle Scholar
Ichikawa, Y. Kawamura, K. Theramast, N. and Kitayama, K., 2004 Secondary and tertial consolidation of bentonite clay: Consolidation test, moleculardynamics simulation and multiscale homogenization analysis Mechanics of Materials 36 487513 10.1016/S0167-6636(03)00073-5.CrossRefGoogle Scholar
Iwasaki, T. and Watanabe, T., 1988 Distribution of Ca and Na ions in dioctahedral smectites and interstratified dioctahedral mica smectites Clays and Clay Minerals 36 7382 10.1346/CCMN.1988.0360110.CrossRefGoogle Scholar
Jorgensen, W.L. and Tirado-Rives, J., 1988 The OPLS (optimized potentials forliquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin Journal of the American Chemical Society 110 16571666 10.1021/ja00214a001.CrossRefGoogle Scholar
Jorgensen, W.L. Chandrasekhar, J. and Madura, J.D., 1983 Comparison of simple potential functions for simulating liquid water Journal of Chemical Physics 79 926935 10.1063/1.445869.CrossRefGoogle Scholar
Kawamura, K. Ichikawa, Y. Nakano, M. Kitayama, K. and Kawamura, H., 1999 Swelling properties of smectite up to 90 degrees C — in situ X-ray diffraction experiments and moleculardynamic simulations Engineering Geology 54 7579 10.1016/S0013-7952(99)00063-0.CrossRefGoogle Scholar
Kemner, K.M. Hunter, D.B. Bertsch, P.M. Kirkland, J.P. and Elam, W.T., 1997 Determination of site specific binding environments of surface sorbed cesium on clay minerals by Cs-EXAFS Journal de Physique IV 7 C2.777C2.779.Google Scholar
Kim, Y. Cygan, R.T. and Kirkpatrick, R.J., 1996 Cs-133 NMR and XPS investigation of cesium adsorbed on clay minerals and related phases Geochimica et Cosmochimica Acta 60 10411052 10.1016/0016-7037(95)00452-1.CrossRefGoogle Scholar
Kim, Y. Kirkpatrick, R.J. and Cygan, R.T., 1996 Cs-133 NMR study of cesium on the surfaces of kaolinite and illite Geochimica et Cosmochimica Acta 60 40594074 10.1016/S0016-7037(96)00257-8.CrossRefGoogle Scholar
Laird, D.A., 2006 Influence of layer charge on swelling of smectites Applied Clay Science 34 7487 10.1016/j.clay.2006.01.009.CrossRefGoogle Scholar
Mahoney, M.W. and Jorgensen, W.L., 2001 Diffusion constant of the TIP5P model of liquid water Journal of Chemical Physics 114 363366 10.1063/1.1329346.CrossRefGoogle Scholar
Malikova, N. Marry, V. Dufreche, J.F. and Turq, P., 2004 Na/Cs montmorillonite: Temperature activation of diffusion by simulation Current Opinion in Colloid and Interface Science 9 124127 10.1016/j.cocis.2004.05.016.CrossRefGoogle Scholar
Malikova, N. Marry, V. Dufreche, J.F. Simon, C. Turq, P. and Giffaut, E., 2004 Temperature effect in a montmorillonite clay at low hydration — microscopic simulation Molecular Physics 102 19651977 10.1080/00268970412331290995.CrossRefGoogle Scholar
Malikova, N. Cadene, A. Marry, V. Dubois, E. Turq, P. Zanotti, J.M. and Longeville, S., 2005 Diffusion of water in clays — microscopic simulation and neutron scattering Chemical Physics 317 226235 10.1016/j.chemphys.2005.04.035.CrossRefGoogle Scholar
Marry, V. and Turq, P., 2002 Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites Journal of Chemical Physics 117 34543463 10.1063/1.1493186.CrossRefGoogle Scholar
Marry, V. and Turq, P., 2003 Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites Journal of Physical Chemistry B 107 18321839 10.1021/jp022084z.CrossRefGoogle Scholar
Marry, V. Turq, P. Cartailler, T. and Levesque, D., 2002 Microscopic simulation of structure and dynamics of water and counterions in a monohydrated montmorillonite Journal of Chemical Physics 117 34543463 10.1063/1.1493186.CrossRefGoogle Scholar
Marry, V. Dufreche, J.F. Jardat, M. Meriguet, G. Turq, P. and Grun, F., 2002 Dynamics and transport in charged porous media Colloids and Surfaces A — Physicochemical and Engineering Aspects 222 147153.Google Scholar
Marry, V. Grun, F. Simon, C. Jardat, M. Turq, P. and Amatore, C., 2002 Structure and dynamics in colloidal and porous charged media Journal of Physics: Condensed Matter 14 92079221.Google Scholar
Michot, L.J. Bihannic, I. Pelletier, M. Rinnert, E. and Robert, J.L., 2005 Hydration and swelling of synthetic Na-saponites: Influence of layercharge American Mineralogist 90 166172 10.2138/am.2005.1600.CrossRefGoogle Scholar
Michot, L.J. Delville, A. Humbert, B. Plazanet, M. and Levitz, P., 2007 Diffusion of waterin a synthetic clay with tetrahedral charges by combined neutron time-of-flight measurements and molecular dynamics simulations Journal of Physical Chemistry C 111 98189831 10.1021/jp0690446.CrossRefGoogle Scholar
Mooney, R.W. Keenan, A.G. and Wood, L.A., 1952 Adsorption of water vapor by montmorillonite. 2. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction Journal of the American Chemical Society 74 13711374 10.1021/ja01126a002.CrossRefGoogle Scholar
Nagra, 2002 Project Opalinus Clay: Safety report Wettingen, Switzerland Nagra 718 pp.Google Scholar
Nakano, M. Kawamura, K. and Ichikawa, Y., 2003 Local structural information of Cs in smectite hydrates by means of an EXAFS study and moleculardynamics simulations Applied Clay Science 23 1523 10.1016/S0169-1317(03)00082-6.CrossRefGoogle Scholar
Norrish, K., 1954 The swelling of montmorillonite Discussions of the Faraday Society 18 120134 10.1039/df9541800120.CrossRefGoogle Scholar
Norrish, K. and Quirk, J.P., 1954 Crystalline swelling of montmorillonite — use of electrolytes to control swelling Nature 173 255256 10.1038/173255a0.CrossRefGoogle Scholar
Pons, C.H. Rousseaux, F. and Tchoubar, D., 1981 Use of low-angle scattering from a synchrotron-beam for studying the swelling of smectites. 1. Study of the water-montmorillonite-sodium system as a function of temperature Clay Minerals 16 2342 10.1180/claymin.1981.016.1.02.CrossRefGoogle Scholar
Prayongphan, S. Ichikawa, Y. Kawamura, K. Suzuki, S. and Chae, B.G., 2006 Diffusion with micro-sorption in bentonite: Evaluation by moleculardynamics and homogenization analysis Computational Mechanics 37 369380 10.1007/s00466-005-0676-3.CrossRefGoogle Scholar
Reddy, M.R. and Berkowitz, M., 1988 Conductance of Cs+ ion in water — molecular-dynamics simulation Journal of Solution Chemistry 17 11831191 10.1007/BF00662927.CrossRefGoogle Scholar
Reddy, M.R. and Berkowitz, M., 1988 Temperature-dependence of conductance of the Li+, Cs+, and Cl ions in water — molecular-dynamics simulation Journal of Chemical Physics 88 71047110 10.1063/1.454360.CrossRefGoogle Scholar
Rinnert, E. Carteret, C. Humbert, B. Fragneto-Cusani, G. Ramsay, J.D.F. Delville, A. Robert, J.L. Bihannic, I. Pelletier, M. and Michot, L.J., 2005 Hydration of a synthetic clay with tetrahedral charges: A multidisciplinary experimental and numerical study Journal of Physical Chemistry B 109 2374523759 10.1021/jp050957u.CrossRefGoogle ScholarPubMed
Sainz-Díaz, C.I. Timón, V. Totella, V. Artacho, E. and Hernández-Laguna, A., 2002 Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite, and smectite American Mineralogist 87 958965 10.2138/am-2002-0719.CrossRefGoogle Scholar
Skipper, N.T. Refson, K. and McConnell, J.D.C., 1991 Computer-simulation of interlayer water in 2-1 clays Journal of Chemical Physics 94 74347445 10.1063/1.460175.CrossRefGoogle Scholar
Skipper, N.T. Sposito, G. and Chang, F.R.C., 1995 Monte-Carlo simulation of interlayer molecular-structure in swelling clay minerals. 2. Monolayer hydrates Clays and Clay Minerals 43 294303 10.1346/CCMN.1995.0430304.CrossRefGoogle Scholar
Skipper, N.T. Chang, F.R.C. and Sposito, G., 1995 Monte-Carlo simulation of interlayer molecular-structure in swelling clay-minerals. 1. Methodology Clays and Clay Minerals 43 285293 10.1346/CCMN.1995.0430303.CrossRefGoogle Scholar
Skipper, N.T. Lock, P.A. Titiloye, J.O. Swenson, J. Mirza, Z.A. Howells, W.S. and Fernandez-Alonso, F., 2006 The structure and dynamics of 2-dimensional fluids in swelling clays Chemical Geology 230 182196 10.1016/j.chemgeo.2006.02.023.CrossRefGoogle Scholar
Slade, P.G. Quirk, J.P. and Norrish, K., 1991 Crystalline swelling of smectite samples in concentrated NaCl solutions in relation to layer charge Clays and Clay Minerals 39 234238 10.1346/CCMN.1991.0390302.CrossRefGoogle Scholar
Smith, D.E., 1998 Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite Langmuir 14 59595967 10.1021/la980015z.CrossRefGoogle Scholar
Smith, W. and Forester, T.R., 1996 DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package Journal of Molecular Graphics 14 136141 10.1016/S0263-7855(96)00043-4.CrossRefGoogle ScholarPubMed
Smith, W. Yong, C.W. and Rodger, P.M., 2002 DL_POLY: Application to molecularsimulation Molecular Simulation 28 385471 10.1080/08927020290018769.CrossRefGoogle Scholar
Sutton, R. and Sposito, G., 2001 Molecular simulation of interlayer structure and dynamics in 12.4 angstrom Cs-smectite hydrates Journal of Colloid and Interface Science 237 174184 10.1006/jcis.2000.7416.CrossRefGoogle Scholar
Sutton, R. and Sposito, G., 2002 Animated molecular dynamics simulations of hydrated caesium-smectite interlayers Geochemical Transactions 3 7380 10.1186/1467-4866-3-73.CrossRefGoogle ScholarPubMed
Tambach, T.J. Hensen, E.J.M. and Smit, B., 2004 Molecularsimulations of swelling clay minerals Journal of Physical Chemistry B 108 75867596 10.1021/jp049799h.CrossRefGoogle Scholar
Tambach, T.J. Bolhuis, P.G. and Smit, B., 2004 A molecularmechanism of hysteresis in clay swelling Angewandte Chemie-International Edition 43 26502652 10.1002/anie.200353612.CrossRefGoogle Scholar
Telleria, M.I. Slade, P.G. and Radoslovich, E.W., 1977 X-ray study of interlayer region of a barium-vermiculite Clays and Clay Minerals 25 119125 10.1346/CCMN.1977.0250208.CrossRefGoogle Scholar
Teppen, B.J. and Miller, D.M., 2006 Hydration energy determines isovalent cation exchange selectivity by clay minerals Soil Science Society of America Journal 70 3140 10.2136/sssaj2004.0212.CrossRefGoogle Scholar
Van Loon, L.R. and Jakob, A., 2005 Evidence for a second transport porosity for the diffusion of tritiated water (HTO) in a sedimentary rock (Opalinus Clay — OPA): Application of through- and out-diffusion techniques Transport in Porous Media 61 193214 10.1007/s11242-004-7464-y.CrossRefGoogle Scholar
Weiss, C.A. Kirkpatrick, R.J. and Altaner, S.P., 1990 The structural environments of cations adsorbed onto clays — Cs-133 variable-temperature MAS NMR spectroscopic study of hectorite Geochimica et Cosmochimica Acta 54 16551669 10.1016/0016-7037(90)90398-5.CrossRefGoogle Scholar
Weiss, C.A. Kirkpatrick, R.J. and Altaner, S.P., 1990 Variations in interlayer cation sites of clay-minerals as studied by Cs-133 MAS nuclear-magnetic-resonance spectroscopy American Mineralogist 75 970982.Google Scholar