Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-10T07:50:00.228Z Has data issue: false hasContentIssue false

Effect of Illite Particle Shape on Cesium Sorption

Published online by Cambridge University Press:  28 February 2024

Pavol Rajec
Affiliation:
Department of Nuclear Chemistry, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
Vladimír Šucha*
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
Dennis D. Eberl
Affiliation:
U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, USA
Jan Środoń
Affiliation:
Institute of Geology, Polish Academy of Sciences, Senacka 1, Krakow, Poland
Françoise Elsass
Affiliation:
INRA, Station de Science du Sol, Route de St. Cyr, 78026 Versailles, France
*
E-mail of corresponding author: sucha@fns.uniba.sk

Abstract

Samples containing illite and illite-smectite, having different crystal shapes (plates, “barrels”, and filaments), were selected for sorption experiments with cesium. There is a positive correlation between total surface area and Cs-sorption capacity, but no correlation between total surface area and the distribution coefficient, Kd. Generally Kd increases with the edge surface area, although “hairy” (filamentous) illite does not fit this pattern, possibly because elongation of crystals along one axis reduces the number of specific sorption sites.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coleman, N.T. Craig, D. and Lewis, R.J., 1963 Ion-exchange reactions of cesium Soil Science Society of America Proceedings 27 287289 10.2136/sssaj1963.03615995002700030022x.CrossRefGoogle Scholar
Cornell, R.M., 1993 Adsorption of cesium on minerals: A review Journal of Radioanalytical and Nuclear Chemistry, Articles 171 483500 10.1007/BF02219872.CrossRefGoogle Scholar
Cremers, A. Elsen, A. De Preter, P. and Maes, A., 1988 Quantitative analysis of radiocaesium retention in soils Nature 335 247249 10.1038/335247a0.CrossRefGoogle Scholar
Eberl, D.D., 1980 Alkali cation selectivity and fixation by clay minerals Clays and Clay Minerals 28 161172 10.1346/CCMN.1980.0280301.CrossRefGoogle Scholar
Eberl, D.D. Środoń, J. Lee, M. Nadeau, P.H. and Northrop, H.R., 1987 Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin and particle thickness American Mineralogist 72 914934.Google Scholar
Gabis, V., 1963 Etude mineralogique et geochimique de la serie sedimentaire oligocene du Velay Bulletin Societe Francaise de Mineralogie et Cristallographie 86 315354 10.3406/bulmi.1963.5663.CrossRefGoogle Scholar
Gaudette, H.E. Grim, R.E. and Metzger, C.F., 1966 Mite: A model based on the sorption behaviour of cesium American Mineralogist 51 16491656.Google Scholar
Jackson, M.L., 1975 Soil Chemical AnalysisAdvanced Course .Google Scholar
Jacobs, D.G. and Tamura, T., 1960 The mechanism of ion fixation using radio-isotope techniques Transaction of the International Congress of Soil Science, 7, Madison, 1960 Amsterdam International Society of Soil Science, Elsevier 206214.Google Scholar
Kittrick, J.A., 1966 Forces involved in ion fixation by vermiculite Soil Science Society of America Proceedings 30 801803 10.2136/sssaj1966.03615995003000060040x.CrossRefGoogle Scholar
Klobe, B. and Gast, R.G., 1970 Conditions affecting cesium fixation and sodium entrapment in hydrobiotite and vermiculite Soil Science Society of America Proceedings 34 746750 10.2136/sssaj1970.03615995003400050023x.CrossRefGoogle Scholar
Komarneni, S. and Roy, R., 1988 A cesium selective ion sieve made by topotactic leaching Science 239 12861288 10.1126/science.239.4845.1286.CrossRefGoogle ScholarPubMed
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., 1985 The conversion of smectite to illite during diagenesis: Evidence from some illitic clays from bentonites and sandstones Mineralogical Magazine 49 393400 10.1180/minmag.1985.049.352.10.CrossRefGoogle Scholar
Norrish, K. and Pickering, G.J., 1983 Clay Minerals Soils: An Australian Viewpoint Melbourne Division of Soils, CSIRO, Academic Press 281308.Google Scholar
Sawhney, B.L., 1964 Sorption and fixation of microquantities of Cs by clay minerals: Effect of saturating cations Soil Science Society of America Proceedings 28 183186 10.2136/sssaj1964.03615995002800020017x.CrossRefGoogle Scholar
Sawhney, B.L., 1972 Selective sorption and fixation of cations by clay minerals: A review Clays and Clay Minerals 20 93100 10.1346/CCMN.1972.0200208.CrossRefGoogle Scholar
Środoś, J. and Elsass, F., 1994 Effect of the shape of fundamental particles on XRD characteristics of illitic minerals European Journal of Mineralogy 6 113122 10.1127/ejm/6/1/0113.CrossRefGoogle Scholar
Srodori, J. Elsass, E. McHardy, W.J. and Morgan, D.J., 1992 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158 10.1180/claymin.1992.027.2.01.Google Scholar
Staunton, S. and Roubaud, M., 1997 Adsorption of 137Cs on montmorillonite and illite: Effect of charge compensing cation, ionic strength concentration of Cs, K and fulvic acid Clays and Clay Minerals 45 251260 10.1346/CCMN.1997.0450213.CrossRefGoogle Scholar
Šucha, V. Kraus, I. Mosser, C. Hroncová, Z. Soboleva, K.A. and Širáňová, V., 1992 Mixed-layer illite/smectite from the Dolná Ves hydrothermal deposit, The Western Carpathians, Kremnica Mts Geologica Carpathica-Series Clays 43 1319.Google Scholar
Tamura, T. and Jacobs, D.G., 1960 Structural implications in cesium sorption Health Physics 2 391398 10.1097/00004032-195910000-00009.CrossRefGoogle ScholarPubMed