Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-14T15:26:39.308Z Has data issue: false hasContentIssue false

Enhancement of Amorphous Silica Dissolution by Interaction with Six-Membered Ring Heterocyclic Compounds

Published online by Cambridge University Press:  01 January 2024

Motoharu Kawano*
Affiliation:
Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065 Japan
Jinyeon Hwang
Affiliation:
Division of Earth Environmental System, Pusan National University, Busan 609-735, Korea
*
*E-mail address of corresponding author: kawano@sci.kagoshimau.ac.jp

Abstract

Six-membered ring heterocyclic compounds are widely present in the Earth's surface environments as biological organic molecules composed of soil organic matter including plant and microbial residues, while little is known about their effect on the dissolution of silicate minerals including amorphous silica. To evaluate the effect of these biological molecules on amorphous silica dissolution, dissolution experiments were carried out by the flow-through method using 0.1 g of amorphous silica and 0.1 mM NaCl electrolyte solutions containing 0.0, 0.1, 1.0, or 10.0 mM of the heterocyclic compounds, piperidine (pK = 11.12), pyridine (pK = 5.25), or pyridazine (pK = 2.33), at a pH of 6, 5, or 4. Additionally, adsorption experiments of the compounds on the amorphous silica surface were performed to confirm the adsorption affinity for the amorphous silica surface. The results demonstrated that these heterocyclic compounds enhance the dissolution rate of amorphous silica in the following order: piperidine > pyridine > pyridazine. When 10.0 mM solutions were used, the heterocyclic compounds enhanced greatly the dissolution rate up to enhancement factors of 6.0 to ~14.8, 5.0 to ~14.0, and 1.0 to ~2.6 through an interaction of piperidine, pyridine, and pyridazine, respectively, in the pH range of approximately 6 to ~ 4. The adsorption experiments indicated that the heterocyclic compounds exhibited significant adsorption affinity for the amorphous silica surface as follows: piperidine > pyridine > pyridazine, which was consistent with the order of their effects on the dissolution enhancement. The geochemical calculation revealed that this order of enhancement was in good agreement with the concentrations of cationic species of heterocyclic compounds at corresponding pH conditions. Consequently, the enhancement of amorphous silica dissolution is likely to be influenced by the electrostatic complexation of the cationic species of the heterocyclic compounds with the negative >SiO sites on the amorphous silica surface.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article was updated to correct formatting errors introduced in Equations 3, 4, and 5.

References

Andersen, A., Reardon, P. N., Chacon, S. S., Qafoku, N. P., Washton, N. M., & Kleber, M. (2016). Protein–mineral interactions: molecular dynamics simulations capture importance of variations in mineral surface composition and structure. Langmuir, 32, 61946209.CrossRefGoogle ScholarPubMed
Banfield, J. F., & Nealson, K. H. editors (1997). Geomicrobiology: Interaction between Microbes and Minerals. Reviews in Mineralogy, Vol. 35, (448 pp). Washington DC: Mineralogical Society of America.Google Scholar
Barker, P., Fontes, J. C., Gasse, F., & Druart, J. C. (1994). Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnology and Oceanography, 39, 99110.CrossRefGoogle Scholar
Barker, W. W., Welch, S. A., & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. In Banfield, J. F. & Nealson, K. H. (Eds.), Geomicrobiology: Interactions between Microbes and Minerals (pp. 391428). Reviews in Mineralogy, Vol. 35, Washington DC: Mineralogical Society of America.CrossRefGoogle Scholar
Bennett, P. C. (1991). Quartz dissolution in organic-rich aqueous systems. Geochimica et Cosmochimica Acta, 55, 17811797.CrossRefGoogle Scholar
Berthelin, J., Huang, P. M., Bollag, J.-M., & Andreux, F. (1999). Effect of mineral-organic-microorganism interactions on soil and freshwater environments (400 pp). New York: Kluwer Academic / Plenum Publishers.CrossRefGoogle Scholar
Bidle, K. D., & Azam, F. (1999). Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 397, 508512.CrossRefGoogle Scholar
Chorover, J., Kretzschmar, R., Garica-Pichel, F., & Sparks, D. L. (2007). Soil biogeochemical processes within the critical zone. Elements, 3, 321326.CrossRefGoogle Scholar
Cuadros, J. (2017). Clay minerals interaction with microorganisms: a review. Clay Minerals, 52, 235261.CrossRefGoogle Scholar
Dean, J. A. (1985). Lange's Handbook of Chemistry (13th ed. pp. 1145). New York: McGaw–Hill.Google Scholar
Dove, P. M., & Rimstidt, J. D. (1994). Silica-water interface. In Heaney, P. J. & Prewitt, C. T. (Eds.), Silica, physical behavior, geochemistry and materials applications (pp. 259308). Reviews in Mineralogy, Vol. 29, Washington DC: Mineralogical Society of America.CrossRefGoogle Scholar
Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156, 609643.CrossRefGoogle ScholarPubMed
Ganor, J., Reznik, I. J., & Rosenberg, Y. O. (2007). Organics in water–rock interactions. In Oelkers, E. H. & Schott, J. (Eds.) hermodynamics and kinetics of water-rock interaction (pp. 259369). Reviews in Mineralogy and Geochemistry, Vol. 70, Washington DC: Mineralogical Society of America.Google Scholar
Greathouse, J. A., Johnson, K. L., & Greenwell, H. C. (2014). Interaction of natural organic matter with layered minerals: recent developments in computational methods at the nanoscale. Minerals, 4, 519540.CrossRefGoogle Scholar
Huang, P. M. (2008). Soil physical–chemical-biological interfacial interactions: an overview. In Huang, Q., Huang, P. M., & ante, A. Viol (Eds.), Soil mineral-microbe-organic interactions (pp. 337). Berlin: Springer.CrossRefGoogle Scholar
Huang, P. M., Berthelin, J., Bollag, J.-M., McGill, W. B., & Page, A. L. (1995). Environmental impacts of soil component interactions: land quality, natural and anthropogenic organics, volume I (283 pp). Boca Raton, Florida, USA: CRC Press.Google Scholar
Icenhower, J. P., & Dove, P. M. (2000). The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochimica et Cosmochimica Acta, 64, 41934203.CrossRefGoogle Scholar
Kawano, M., & Obokata, S. (2007). The effect of amino acids on the dissolution rates of amorphous silica in near-neutral solution. Clays and Clay Minerals, 55, 361368.CrossRefGoogle Scholar
Kawano, M., Hatta, T., & Hwang, J. (2009). Enhancement of dissolution rates of amorphous silica by interaction with amino acids in solution at pH4. Clays and Clay Minerals, 57, 161167.CrossRefGoogle Scholar
Kawano, M., & Hwang, J. (2010a). Enhancement of dissolution rates of amorphous silica by interaction with bovine serum albumin at different pH conditions. Clays and Clay Minerals, 58, 272279.CrossRefGoogle Scholar
Kawano, M., & Hwang, J. (2010b). Influence of guanidine, imidazole, and some heterocyclic compounds on dissolution rates of amorphous silica. Clays and Clay Minerals, 58, 757765.CrossRefGoogle Scholar
Li, H., & Chen, F. (2000). Determination of silicate in water by ion exclusion chromatography with conductivity detection. Journal of Chromatography A, 874, 143147.CrossRefGoogle ScholarPubMed
Mueller, B. (2015). Experimental interactions between clay minerals and bacteria: a review. Pedosphere, 25, 799810.CrossRefGoogle Scholar
Müller, B. (1996). ChemEQL V.2.0. A program to calculate chemical speciation and chemical equilibria. Dübendorf, Switzerland: Eidgenössische Anstalt für Wasserversorgung.Google Scholar
Parida, S. K., Dash, S., Patel, S., & Mishra, B. K. (2006). Adsorption of organic molecules on silica surface. Advances in Colloid and Interface Science, 121, 77110.CrossRefGoogle ScholarPubMed
Quiquampoix, H., & Burns, R. G. (2007). Interactions between proteins and soil mineral surfaces: Environmental and health consequences. Elements, 3, 401406.CrossRefGoogle Scholar
Renforth, P., Pogge von Strandmann, P. A. E., & Henderson, G. M. (2015). The dissolution of olivine added to soil: Implications for enhanced weathering. Applied Geochemistry, 61, 109118.CrossRefGoogle Scholar
Schepers, J.S., & Raun, W.R. (2008). Nitrogen in Agricultural Systems, agronomy monographs 49. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin USA, 984 pp.CrossRefGoogle Scholar
Seidel, A., Löbbus, M., Vogelsberger, W., & Sonnefeld, J. (1997). The kinetics of dissolution of silica ‘Monospher’ into water at different concentrations of background electrolyte. Solid State Ionics, 101–103, 713719.CrossRefGoogle Scholar
Seltmann, G., & Holst, O. (2002). The Bacterial Cell Wall (280 pp). Berlin: Springer.CrossRefGoogle Scholar
Ullman, W.J., & Welch, S.A. (2002). Organic ligands and feldspar dissolution. In: R. Hellmann & S.A. Wood (Eds.), Water-rock interactions, ore deposits, and environmental geochemistry: a tribute to David A. Crearar (pp. 335), Geochemical Society Special Publication No. 7. St. Louis, Missouri, USAGoogle Scholar
Welch, S. A., & Ullman, W. J. (1996). Feldspar dissolution in acidic and organic solutions: compositional and pH dependence of dissolution rate. Geochimica et Cosmochimica Acta, 60, 29392948.CrossRefGoogle Scholar
Welch, S. A., Barker, W. W., & Banfield, J. F. (1999). Microbial extracellular polysaccharides and plagioclase dissolution. Geochimica et Cosmochimica Acta, 63, 14051419.CrossRefGoogle Scholar
Wingender, J., Neu, T. R., & Flemming, H.-C. (1999). Microbial Extracellular Polymeric Substances (258 pp). Berlin: Springer.CrossRefGoogle Scholar
White, A. F., & Brantley, S. L. (1995). Chemical Weathering Rates of Silicate Minerals. (599 pp). Washington DC: Reviews in Mineralogy, Vol. 31, Mineralogical Society of America.CrossRefGoogle Scholar
Wogelius, R. A., & Walther, J. V. (1991). Olivine dissolution at 25°C: effects of pH, CO2, and organic acids. Geochimica et Cosmochimica Acta, 55, 943954.CrossRefGoogle Scholar